Tìm a,b thuộc N* sao cho \(\frac{ab\left(a+b\right)}{ab+2}\) thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 4C = 12|x|+8/4|x|-5 = 3 + 23/|x|-5 <= 3 + 23/0-5 = -8/5
=> C <= -2/5
Dấu "=" xảy ra <=> x=0
Vậy Min ...
b, Để C thuộc N => 3|x|+2 chia hết cho 4|x|-5
=> 4.(3|x|+2) chia hết cho 4|x|-5
<=> 12|x|+8 chia hết cho 4|x|-5
<=> 3.(|x|+5) + 23 chia hết cho 4|x|-5
=> 23 chia hết chi 4|x|-5 [ vì 3.(4|x|-5) chia hết cho 4|x|-5 ]
Đến đó bạn tìm ước của 23 rùi giải
Không mất tính tổng quát, giả sử \(a\le b\). Ta có:
\(A=\frac{a\left(a-b\right)+\left(b+1\right)\left(b-1\right)}{\left(a+1\right)\left(b+1\right)}+3\le3\)
Đẳng thức xảy ra khi \(\left(a;b\right)=\left\{\left(0;1\right),\left(1;0\right),\left(1;1\right)\right\}\)
Vậy ..
P/s; Nếu không muốn giả sử thì có thể xét hai trường hợp. Cách làm tương tự. Mà em không chắc đâu:v
Đường thẳng d có vectơ chỉ phương \(\overrightarrow{u}\left(-2;2;1\right)\) và đi qua \(M\left(3;6;1\right)\)
Đường thẳng AB có vectơ chỉ phương \(\overrightarrow{AB}\left(-4;-2;5\right)\) và đi qua \(\overrightarrow{AM}\left(-1;4;-1\right)\)
Ta có \(\left[\overrightarrow{u},\overrightarrow{AB}\right]=\left(12;6;12\right)\Rightarrow\left[\overrightarrow{u},\overrightarrow{AB}\right].\overrightarrow{AM}=-12+24-12=0\)
Vậy ta có AB và d đồng phẳng.
\(C\in d\Rightarrow C\left(3-2t;6+2t;1+t\right)\)
Tam giác ABC cân tại A \(\Leftrightarrow AB=AC\)
\(\Leftrightarrow\left(1+2t\right)^2+\left(4+2t\right)^2+\left(1-t\right)^2=45\)
\(\Leftrightarrow9t^2-18t-27=0\)
\(\Leftrightarrow t=1\) hoặc \(t=-3\)
Vậy \(C\left(1;8;2\right)\) hoặc \(C\left(9;0;-2\right)\)
Tính A:
Các tích có dạng n(n+1)và bé hơn hoặc bằng 12 mà n thuộc n là
0.1;1.2 ; 2.3 ; 3.4
Mà n < n+1
=> n thuộc {0;1;2;3}
Tính B
Với x thuộc Z, /x/ < 3
=>/ x/ thuộc {0;1;2}
=> x thuộc {-2;-1;0;1;2}
a) A giao B = {0;1;2;}
b)Tập hợp A có 4 phần tử mà a thuộc a => a có 4 cách chọn
Tập hợp B có 5 phần tử mà b thuộc B => b có 5 cách chọn
Vậy có số tích ab là:
4.5=20(tích)