\(\frac{\left(1+a+b\right)\left(2+a+b\right)}{1+a+b+ab}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2020

Không mất tính tổng quát, giả sử \(a\le b\). Ta có:

\(A=\frac{a\left(a-b\right)+\left(b+1\right)\left(b-1\right)}{\left(a+1\right)\left(b+1\right)}+3\le3\)

Đẳng thức xảy ra khi \(\left(a;b\right)=\left\{\left(0;1\right),\left(1;0\right),\left(1;1\right)\right\}\)

Vậy ..

P/s; Nếu không muốn giả sử thì có thể xét hai trường hợp. Cách làm tương tự. Mà em không chắc đâu:v

11 tháng 10 2019

a b c la : nhau vay a 2 b 5 c 9

11 tháng 10 2019

dap an laf a 4  b 6c 14

22 tháng 4 2020

jh hutn jnoh lhgvhx

22 tháng 4 2020

Ta có : 2(a2  + b2 ) - ( a + b) -a2 -2ab + b2 =( a-b)\(\ge0\)

=> 2(a2 + b2 ) \(\ge\left(a+b\right)^2\)

tương tự : 2(b2 +c2 ) \(\ge\)( b + c)2 

                   2 (c2 + a2\(\ge\)( c + a)2 

=> P \(\le\frac{c}{a+b+1}+\frac{a}{b+c+1}+\frac{b}{c+a+1}\)

\(\le\frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}\)( do  a ,b, c \(\le1\))

\(\frac{a+b+c}{a+b+c}=1\)

Vậy Max P = 1 <=> a = b = c =1

31 tháng 8 2018

Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Đặt a+b=x;b+c=y;c+a=z

\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

31 tháng 8 2018

Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)

Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)

13 tháng 12 2019

Nguyễn Thị Ngọc Thơ, Nguyễn Việt Lâm, @No choice teen, @Trần Thanh Phương, @Akai Haruma

giúp e vs ạ! Cần gấp!

thanks nhiều!

26 tháng 7 2019

Ta có \(\frac{1}{a+b+1}=\left(1-\frac{1}{b+c+1}\right)+\left(1-\frac{1}{a+c+1}\right)=\frac{b+c}{b+c+1}+\frac{a+c}{a+c+1}\)

                                                                                                                   \(\ge2\sqrt{\frac{\left(b+c\right)\left(a+c\right)}{\left(b+c+1\right)\left(a+c+1\right)}}\)

Tương tự \(\frac{1}{b+c+1}\ge2\sqrt{\frac{\left(a+b\right)\left(a+c\right)}{\left(a+b+1\right)\left(a+c+1\right)}}\)

                 \(\frac{1}{a+c+1}\ge2\sqrt{\frac{\left(a+b\right)\left(b+c\right)}{\left(a+b+1\right)\left(b+c+1\right)}}\)

Nhân 3 bđt trên ta có:

\(\frac{1}{\left(a+b+1\right)\left(b+c+1\right)\left(a+c+1\right)}\ge\frac{8\left(a+b\right)\left(b+c\right)\left(a+c\right)}{\left(a+b+1\right)\left(b+c+1\right)\left(a+c+1\right)}\)

=> \(\left(a+b\right)\left(b+c\right)\left(a+c\right)\le\frac{1}{8}\)

MaxA=1/8 khi a=b=c=1/4

26 tháng 8 2017

32ac+b

26 tháng 8 2017

(d) qua A(5; 6) : y = mx - 5m + 6 (1) 
(C) : (x - 1)² + (y - 2)² = 1 (2) 
Thay y từ (1) vào (2) ta có phương trình hoành độ giao điểm của (d) và (C) 
(x - 1)² + (mx - 5m + 4)² = 1 
Khai triển ra pt bậc 2 : (m² + 1)x² - 2(5m² - 4m + 1)x + 25m² - 40m + 17 = 0 (*) 
Để (d) tiếp xúc (C) thì (*) phải có nghiệm kép 
∆' = (5m² - 4m + 1)² - (m² + 1)(25m² - 40m + 17) = - 4(3m² - 8m + 4) = 4(m - 2)(2 - 3m) = 0 => m = 3/2; m = 2 
KL : Có 2 đường thẳng cần tìm 
(d1) : y = (3/2)(x - 1) 
(d2) : y = 2x - 4 

∆ ∠ ∡ √ ∛ ∜ x² ⁻¹ ∫ π × ∵ ∴ | | , ⊥,∈∝ ≤ ≥− ± , ÷ ° ≠ → ∞, ≡ , ≅ , ∑,∪,¼ , ½ , ¾ , ≈ , [-b ± √(b² - 4ac) ] / 2a Σ Φ Ω α β γ δ ε η θ λ μ π ρ σ τ φ ω ё й½ ⅓ ⅔ ¼ ⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁼ ⁽ ⁾ ⁿ ₁ ₂ ₃₄₅ ₆ ₇ ₈ ₉ ₊ ₋ ₌ ₍ ₎ ∊ ∧ ∏ ∑ ∠ ,∫ ∫ ψ ω Π∮ ∯ ∰ ∇ ∂ • ⇒ ♠ ★

31 tháng 1 2019

Ta có : \(\frac{a}{\sqrt{bc\left(1+a^2\right)}}=\frac{a}{\sqrt{bc+a.abc}}=\frac{a}{\sqrt{bc+a\left(a+b+c\right)}}\)

                                                                               \(=\frac{a}{\sqrt{bc+a^2+ab+ac}}\)

                                                                                \(=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

Áp dụng bđt Cô-si ngược ta có
\(\frac{a}{\sqrt{bc\left(1+a^2\right)}}=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)

C/m tương tự được \(\frac{b}{\sqrt{ca\left(1+b^2\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{b}{b+c}\right)\)

                                 \(\frac{c}{\sqrt{ab\left(1+c^2\right)}}\le\frac{1}{2}\left(\frac{c}{a+c}+\frac{c}{b+c}\right)\)

Cộng 3 vế của các bđt trên lại ta được

\(A\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{a}{a+c}+\frac{c}{a+c}+\frac{b}{b+c}+\frac{c}{b+c}\right)\)

         \(=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a+b+c=abc\\a=b=c\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=a^3\\a=b=c\end{cases}}\)

                                                                          \(\Leftrightarrow\hept{\begin{cases}a^3-3a=0\\a=b=c\end{cases}}\)

                                                                       \(\Leftrightarrow\hept{\begin{cases}a\left(a^2-3\right)=0\\a=b=c\end{cases}}\) 

                                                                         \(\Leftrightarrow a=b=c=\sqrt{3}\left(a,b,c>0\right)\)

Vậy \(A_{max}=\frac{3}{2}\Leftrightarrow x=y=z=\sqrt{3}\)

2 tháng 2 2020

Ta có: \(\left(a^3+b^3\right)\left(a+b\right)-ab\left(a-1\right)\left(b-1\right)=0\)

\(\Leftrightarrow\frac{\left(a^3+b^3\right)\left(a+b\right)}{ab}=\left(1-a\right)\left(1-b\right)\) \((*)\)

\(+)\frac{\left(a^3+b^3\right)\left(a+b\right)}{ab}=\left(\frac{a^2}{b}+\frac{b^2}{a}\right)\left(a+b\right)\ge2\sqrt{ab}.2\sqrt{ab}=4ab\left(1\right)\)

\(+)\left(1-a\right)\left(1-b\right)=1-\left(a+b\right)+ab\le1-2\sqrt{ab}+ab\left(2\right)\)

Từ: \((1)(2)(*)\) ta được:

\(4ab\le1-2\sqrt{ab}+ab\Leftrightarrow3ab+2\sqrt{ab}-1\le0\)

\(\Rightarrow0< ab\le\frac{1}{9}\)

Từ trên ta suy ra được \(Max_P=\frac{1}{9}\)