K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2018

a)<=>

A,=(x+y)(x-y)=x^2-y^2

x=(-1/2)^5:(1/2)^4=-1/2

x^2=1/4

y=8^2/(-2)^5=-2

y^2=4

A=1/4-4=-15/4

17 tháng 5 2018
https://i.imgur.com/ZAuiaWv.jpg
9 tháng 7 2023

a) 25x² - 16

= (5x)² - 4²

= (5x - 4)(5x + 4)

b) 16a² - 9b²

= (4a)² - (3b)²

= (4a - 3b)(4a + 3b)

c) 8x³ + 1

= (2x)³ + 1³

= (2x + 1)(4x² - 2x + 1)

d) 125x³ + 27y³

= (5x)³ + (3y)³

= (5x + 3y)(25x² - 15xy + 9y²)

e) 8x³ - 125

= (2x)³ - 5³

= (2x - 5)(4x² + 10x + 25)

g) 27x³ - y³

= (3x)³ - y³

= (3x - y)(9x² + 3xy + y²)

9 tháng 7 2023

a) \(25x^2-16=\left(5x-4\right)\left(5x+4\right)\)

b) \(16a^2-9b^2=\left(4a-3b\right)\left(4a+3b\right)\)

c) \(8x^3+1=\left(2x+1\right)\left(4x^2-2x+1\right)\)

d) \(125x^3+27y^3=\left(5x+3y\right)\left(25x^2-15xy+9y^2\right)\)

e) \(8x^3-125=\left(2x-5\right)\left(4x^2-10x+25\right)\)

g) \(27x^3-y^3=\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)

7 tháng 8 2018

a) \(\dfrac{10^{12}+5^{11}.2^9-5^{13}.2^8}{4.5^5.10^6}\)

\(=\dfrac{2^{12}.5^{12}+5^{11}.2^9-5^{13}.2^8}{2^2.5^5.2^6.5^6}\)

\(=\dfrac{2^{12}.5^{12}+5^{11}.2^9-5^{13}.2^8}{2^8.5^{11}}\)

\(=\dfrac{\left(2^8.5^{11}\right)\left(2^4.5+2-5^2\right)}{2^8.5^{11}}\)

\(=2^4.5+2-5^2\)

\(=57\)

b) \(\dfrac{\left[5\left(x-y\right)^4-3\left(x-y\right)^3+4\left(x-y\right)^2\right]}{\left(y-x\right)^2}\)

\(=\dfrac{\left(x-y\right)^2\left[5\left(x-y\right)^2-3\left(x-y\right)+4\right]}{\left(y-x\right)^2}\)

\(=\dfrac{\left(x^2+y^2-2xy\right)\left[5\left(x-y\right)^2-3\left(x-y\right)+4\right]}{\left(y^2+x^2-2xy\right)}\)

\(=5\left(x-y\right)^2-3\left(x-y\right)+4\)

c) \(\dfrac{\left(x+y\right)^5-2\left(x+y\right)^4+3\left(x+y\right)^3}{-5\left(x+y\right)^3}\)

\(=\dfrac{\left(x+y\right)^3\left[5\left(x+y\right)^2-2\left(x+y\right)+3\right]}{-5\left(x+y\right)^3}\)

\(=\dfrac{5\left(x+y\right)^2-2\left(x+y\right)+3}{-5}\)

16 tháng 12 2022

bạn có thể check lại đề bài câu a được không ạ

16 tháng 12 2022

là x^2 = x^5 á bạn

 

DT
27 tháng 1 2023

\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\\ =>\left\{{}\begin{matrix}x^2=9.4=36\\y^2=4.16=64\end{matrix}\right.\\ =>\left\{{}\begin{matrix}x=\pm6\\y=\pm8\end{matrix}\right.\)

a) Từ \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\) (1)

Từ \(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\) (2)

Từ (1) và (2) =>\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)

\(\Rightarrow\left\{{}\begin{matrix}x=-3\cdot9\\y=-3\cdot7\\z=-3\cdot3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-27\\y=-21\\z=-9\end{matrix}\right.\)

b) Từ \(\dfrac{x}{y}=\dfrac{7}{20}\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\) (1)

Từ \(\dfrac{y}{z}=\dfrac{5}{8}\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\Rightarrow\dfrac{y}{20}=\dfrac{z}{32}\) (2)

Từ (1) và (2) =>\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}=\dfrac{2x+5y-2z}{14+100-64}=\dfrac{100}{50}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot7\\y=2\cdot20\\z=2\cdot32\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=14\\y=40\\z=64\end{matrix}\right.\)

c) Đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)

=> \(x=12k\) ; \(y=9k\) ;\(z=5k\)

=> xyz = \(12k\cdot9k\cdot5k\) =\(540\cdot k^3\) = 20

=>\(k^3=20:540=\dfrac{1}{27}=\left(\dfrac{1}{3}\right)^3\)

=>\(k=\dfrac{1}{3}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\cdot12\\y=\dfrac{1}{3}\cdot9\\z=\dfrac{1}{3}\cdot5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\y=3\\z=\dfrac{5}{3}\end{matrix}\right.\)

d) Từ \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}\Rightarrow\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2+z^2}{25+49+9}=\dfrac{585}{83}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{585}{83}\cdot25\\y^2=\dfrac{585}{83}\cdot49\\z^2=\dfrac{585}{83}\cdot9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2=\\y^2=\\z^2=\end{matrix}\right.\) đề bài sai nên ko tìm được x ; y ; z