Bài 28 (trang 22 SGK Toán 9 tập 2): Tìm hai số tự nhiên, biết rằng tổng của chúng bằng 1006 và nếu lấy số lớn chia cho số nhỏ thì được thương là 2 và số dư là 124.
Bài 29 (trang 22 SGK Toán 9 tập 2): Giải bài toán cổ sau:
Quýt, cam mười bảy quả tươi
Đem chia cho một trăm người cùng vui
Chia ba mỗi quả quýt rồi
Còn cam mỗi quả chia mười vừa xinh
Trăm người, trăm miếng ngọt lành
Quýt, cam mỗi loại tính rành là bao?
Bài 28
Đặt sô cần tìm là a và b (a>b)
ta có a+b=1006=> a=1006-b
a=b*2+124=> 1006-b= b*2 +124 => b= 294=> a= 712
bài 29
Gọi số cam là a
số quýt là b
ta có a+b=17=> a=17-b
3*b+a*10=100
=> 3*b+10*(17-b) = 100 => b=10=> a=7
Bài 28:
Gọi số lớn là x, số nhỏ là y (a, y ∈ N*); x > 124. Ta có: Tổng bằng 1006 nên được: x + y = 1006
Số lớn chia số nhỏ được thương là 2, số dư là 124 nên ta có điều kiện là y > 124 và có phương trình: x = 2y + 124
Ta có HPT:
\(\hept{\begin{cases}x+y=1006\\x=2y+124\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1006\\x-2y=124\end{cases}}}\)
Vậy hai số tự nhiên phải tìm là 712 và 294.
Bài 29:
Gọi số cam là x, số quýt là y. Điều kiện x, y là số nguyên dương.
Theo đề bài, ta có HPT: \(\hept{\begin{cases}x+y=17\left(1\right)\\10x+3y=100\left(2\right)\end{cases}}\)
\(\text{PT}\left(1\right)\Leftrightarrow y=17-x\)
Thế (3) vào (2): 10x + 3(17 - x) = 100
<=> 10x + 51 - 3x = 100 <=> 7x = 49 <=> x = 7
=> y = 17 - 7 = 10
=> Có 7 quả cam và 10 quả quýt.