1-1/2+1/3-1/4+...+1/121-1/122+1/123=1/62+1/63+...+1/122+1/123
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 - 1/2 + 1/3 - 1/4 + .. + 1/121 - 1/122 + 1/123
= ( 1 + 1/3 + ... + 1/121 + 1/123 ) - ( 1/2 + 1/4 + .. + 1/122 )
Đến bước này ta sẽ cùng cộng 2 vế với : 1/2 + 1/4 + .. + 1/122
= ( 1 + 1/2 + 1/3 + 1/4 + ...+ 1/121 + 1/122 + 1/123 ) - 2. ( 1/2 + 1/4 + .. + 1/122 )
= ( 1 + 1/2 + 1/3 + ...+ 1/122 +1 /123 ) - ( 1 + 1/2 + ...+ 1/61 )
= 1/62 + 1/63 + ..+1/122 + 1/123
Chúc học giỏi !!
Xét \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{123}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{121}+\frac{1}{123}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{122}\right)\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{121}+\frac{1}{123}\right)-2\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{61}\right)\)
\(=\frac{1}{62}+\frac{1}{63}+\frac{1}{64}+...+\frac{1}{123}\)
\(\dfrac{x+1}{124}+1+\dfrac{x+2}{123}+1=\dfrac{x+3}{122}+1+\dfrac{x+4}{121}+1\)
\(\Leftrightarrow\dfrac{x+125}{124}+\dfrac{x+125}{123}=\dfrac{x+125}{122}+\dfrac{x+125}{121}\)
\(\Leftrightarrow\left(x+125\right)\left(\dfrac{1}{124}+\dfrac{1}{123}-\dfrac{1}{122}-\dfrac{1}{121}\ne0\right)=0\Leftrightarrow x=-125\)
<=>\(\dfrac{x+1}{124}+\dfrac{x+2}{123}-\dfrac{x+3}{122}-\dfrac{x+4}{121}=0\)
<=>\(\left(\dfrac{x+1}{124}+1\right)+\left(\dfrac{x+2}{123}+1\right)-\left(\dfrac{x+3}{122}+1\right)-\left(\dfrac{x+4}{121}+1\right)=0\)
<=>\(\dfrac{x+125}{124}+\dfrac{x+125}{123}-\dfrac{x+125}{122}-\dfrac{x+125}{121}=0\)
<=>\(\left(x+125\right)\left(\dfrac{1}{124}+\dfrac{1}{123}-\dfrac{1}{122}-\dfrac{1}{121}\right)=0\)
<=>x+125=0
<=>x=-125
Số số hạng : (123 - 1) : 1 + 1 = 123
Tổng : (123 + 1) x 123 : 2 = 7626
Giá trị của X trong phép tính 486 : X = 4 ( dư 2 ) là : X = 121
(1/2+2/3+3/4+4/5+...+122/123+123/124).(125-5.25)
=(1/2+2/3+3/4+4/5+...+122/123+123/124).(125-125)
=(1/2+2/3+3/4+4/5+...+122/123+123/124).0=0
A = \(\dfrac{3^{123}+1}{3^{125}+1}\) Vì 3123 + 1 < 2125 + 1 Nên A = \(\dfrac{3^{123}+1}{3^{125}+1}\)< \(\dfrac{3^{123}+1+2}{3^{125}+1+2}\)
A < \(\dfrac{3^{123}+3}{3^{125}+3}\) = \(\dfrac{3.\left(3^{122}+1\right)}{3.\left(3^{124}+1\right)}\) = \(\dfrac{3^{122}+1}{3^{124}+1}\) = B
Vậy A < B