K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADC và ΔAEB có

AD=AE

góc A chung

AC=AB

=>ΔADC=ΔAEB

b: Gọi giao của 3 đường trung trực trong ΔABC là O

=>OB=OC

Kẻ OK vuông góc BC, OK cắt DE tại M

=>OK là trung trực của BC

Xét ΔABC có AD/AB=AE/AC

nên DE//BC

=>OM vuông góc DE tạiM

Xét ΔOBD và ΔOCE có

OB=OC

góc OBD=góc OCE

BD=CE

=>ΔOBD=ΔOCE

=>OE=OD

=>OM là trung trực của DE

a: Xét ΔBAC và ΔAHC có

góc BAC=góc AHC

góc C chung

=>ΔBAC đồng dạng với ΔAHC

b: Xét ΔBAC vuông tại A và ΔACD vuông tại C có

góc ACB=góc CDA

=>ΔBAC đồng dạngvới ΔACD

=>AC/CD=BA/AC

=>AC^2=CD*BA

c: CD//AB

CA vuông góc AB

=>CDBA là hình thang vuông

a) Xét tứ giác AKHP có 

\(\widehat{PAK}=90^0\)(ΔABC vuông tại A)

\(\widehat{AKH}=90^0\left(HK\perp AB\right)\)

\(\widehat{APH}=90^0\left(HP\perp AC\right)\)

Do đó: AKHP là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)