tìm x nguyên để D nguyên D= 2x+5/x-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
(2x-1).(y-2) = 12 = 12.1 = (-12).(-1) = 3.4 = (-3).(-4) = 2.6 = (-2).(-6)
TH1: * 2x-1 = 12 => 2x = 11 => x = 11/2
y - 2 = 1 => y = 3 (trường hợp này loại vì x không là số nguyên)
* 2x-1 = 1 => 2x = 2 => x = 1
y-2 = 12 => y = 14 (TM)
...
rùi bn tự xét típ giống như mk ở trên nha!
Bài 2:
a) Để 3/2x-1 là số nguyên
=> 3 chia hết cho 2x-1
=> 2x-1 thuộc Ư(3)={1;-1;3;-3}
nếu 2x-1 =1 => 2x = 2 => x = 1 (TM)
...
rùi bn tự xét típ nha
câu b,c làm tương tự như câu a nha bn
d) Để x -7/x+2 là số nguyên
=> x -7 chia hết cho x + 2
x + 2 - 9 chia hết cho x +2
mà x +2 chia hết cho x + 2
=> 9 chia hết cho x + 2
=> x + 2 thuộc Ư(9)={1;-1;3;-3;9;-9}
...
e) Để 2x+5/x-3 là số nguyên
=> 2x + 5 chia hết cho x-3
2x - 6 + 11 chia hết cho x -3
2.(x-3) + 11 chia hết cho x -3
mà 2.(x-3) chia hết cho x -3
=> 11 chia hết cho x -3
=> x-3 thuộc Ư(11)={1;-1;11;-11}
...
k mk nha
D=\(\frac{x^2+x-3x-3+4}{x+1}\)=\(\frac{\left(x+1\right)\left(x-3\right)+4}{x+1}\)=\(\left(x-3\right)+\frac{4}{x+1}\)là số nguyên (x#-1)
=> \(4⋮\left(x+1\right)\)=>\(x\in\left\{-5;-3;-2;0;1;3;\right\}\)
Có \(D=\frac{\left(x^2+2x+1-4x\right)}{x+1}\)
= \(\frac{\left(x+1\right)^2-4x}{x+1}\)
= \(x+1-\frac{4x}{x+1}\)
Do x là số nguyên => x+1 là số nguyên => để D nguyên thì \(4x⋮x+1\)(1)
Mà \(4\left(x+1\right)⋮x+1\)
=> \(4x+4⋮x+1\)(2)
Lấy (2)-(1) ta có \(4⋮x+1\)
Do đó ta xét x + 1 \(\in\left(1,2,4,-1,-2,-4\right)\)
=> x \(\in\left(0,1,3,-2,-3,-5\right)\)
Để biểu thức D nhận giá trị nguyên thì \(\frac{x^2-2x+1}{x+1}\in Z\Leftrightarrow x^2-2x+1⋮x+1\)
Ta thấy: \(\left(x+1\right).\left(x+1\right)⋮x+1\Rightarrow x^2+2x+1⋮x+1\)
Suy ra \(x^2-2x+1-\left(x^2+2x+1\right)⋮x+1\)
\(\Rightarrow-4x⋮x+1\). Ta có: \(4\left(x+1\right)⋮x+1\Rightarrow4x+4⋮x+1\)
\(\Rightarrow\) \(4x+4+\left(-4x\right)⋮x+1\Rightarrow4⋮x+1\). Mà \(x+1\in Z\)
Nên \(x+1\)là ước nguyên của 4 \(\Rightarrow x+1\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow x\in\left\{0;1;3;-2;-3;-5\right\}.\)
Kết luận: ...
\(A=\frac{3}{x-1}\)
=> x - 1 \(\in\)Ư(3) = {\(\pm1;\pm3\)}
x -1 | 1 | -1 | 3 | -3 |
x | 2 | 0 | 4 | -2 |
b) \(B=\frac{x+2}{x+1}=\frac{x+1+1}{x+1}=1+\frac{1}{x+1}\)
=> x + 1 \(\in\)Ư(1) = { \(\pm\)1}
=> x = 0 hoặc x = -2
c) \(C=\frac{5}{2x+7}\)
=> 2x + 7 \(\in\)Ư(5) = { \(\pm1;\pm5\)}
=> 2x \(\in\){-6 ; -8 ; -2 ; -12}
=> x \(\in\){ -3; -4 ; -1; -6}
d) \(D=\frac{11x-8}{x+2}=\frac{11\left(x+2\right)-30}{x+2}=11-\frac{30}{x+2}\)
=> 30 \(⋮\)x + 2 => x + 2 thuộc Ư(30)
Tự xét
Bg
a) Ta có: A = \(\frac{3}{x-1}\) (x thuộc Z)
Để A nguyên thì 3 \(⋮\)x - 1
=> x - 1 thuộc Ư(3)
Ư(3) = {1; -1; 3; -3}
=> x - 1 = 1 hay -1 hay 3 hay -3
=> x = 1 + 1 hay -1 + 1 hay 3 + 1 hay -3 + 1
=> x = {2; 0; 4; -2}
b) Ta có: B = \(\frac{x+2}{x+1}\) (x thuộc Z)
Để B nguyên thì x + 2 \(⋮\)x + 1
=> x + 2 - (x + 1) \(⋮\)x + 1
=> x + 2 - x - 1 \(⋮\)x + 1
=> x - x + (2 - 1) \(⋮\)x + 1
=> 1 \(⋮\)x + 1
=> x + 1 thuộc Ư(1)
Ư(1) = {1; -1}
=> x + 1 = 1 hay -1
=> x = 1 - 1 hay -1 - 1
=> x = {0; -2}
c) Ta có: C = \(\frac{5}{2x+7}\) (x thuộc Z)
Để C nguyên thì 5 \(⋮\)2x + 7
=> 2x + 7 thuộc Ư(5)
Ư(5) = {1; - 1; 5; -5}
=> 2x + 7 = 1 hay -1 hay 5 hay -5
......... (Tự làm)
=> x = {-3; -4; -1; -6}
d) Ta có: D = \(\frac{11x-8}{x+2}\) (x thuộc Z)
Để D nguyên thì 11x - 8 \(⋮\)x + 2
=> 11x - 8 - [11(x + 2)] \(⋮\)x + 2
=> 11x - 8 - 11x - 11.2 \(⋮\)x + 2
=> 11x - 11x - (22 + 8) \(⋮\)x + 2
=> 30 \(⋮\)x + 2
=> x + 2 thuộc Ư(30)
Ư(30) = {...}
.... (Tự làm)
=> x = {…}
Để D nguyên thì \(\left(2x+5\right)⋮\left(x-2\right)\)
Ta có :
\(2x+5=2x-4+9=2\left(x-2\right)+9\) chia hết cho \(x-2\) \(\Rightarrow\) \(9⋮\left(x-2\right)\) \(\Rightarrow\) \(\left(x-2\right)\inƯ\left(9\right)\)
Mà \(Ư\left(9\right)=\left\{1;-1;3;-3;9;-9\right\}\)
Suy ra :
Vậy \(n\in\left\{3;1;5;-1;11;-7\right\}\)