K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2021

\(\sqrt{2}\sqrt{7-3\sqrt{5}}\)

\(\sqrt{14-6\sqrt{5}}\)

\(\sqrt{3^2-6\sqrt{5}+\sqrt{5}}\)

\(\sqrt{\left(3-\sqrt{5}\right)^2}\)

vì \(3-\sqrt{5}>0\)

\(\left|3-\sqrt{5}\right|\)

\(3-\sqrt{5}\)

17 tháng 7 2017

Ta có \(P=\left(\frac{\sqrt{14}-\sqrt{7}}{\sqrt{8}-2}-\frac{\sqrt{15}-\sqrt{3}}{2-2\sqrt{5}}\right):\frac{1}{\sqrt{7}-\sqrt{3}}\)

\(=\left(\frac{\sqrt{7}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-\frac{\sqrt{3}\left(\sqrt{5}-1\right)}{2\left(1-\sqrt{5}\right)}\right).\left(\sqrt{7}-\sqrt{3}\right)\)

\(=\left(\frac{\sqrt{7}}{2}+\frac{\sqrt{3}}{2}\right).\left(\sqrt{7}-\sqrt{3}\right)=\frac{\sqrt{7}+\sqrt{3}}{2}.\left(\sqrt{7}-\sqrt{3}\right)\)

\(=\frac{7-3}{2}=2\)

Vậy \(P=2\)

4 tháng 11 2023

\(\dfrac{8}{\sqrt{5}-1}-\dfrac{22}{4+\sqrt{5}}+\dfrac{\sqrt{15}+2\sqrt{5}}{2+\sqrt{3}}\)
\(=\dfrac{8\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}-\dfrac{22\left(4-\sqrt{5}\right)}{\left(\sqrt{5}+4\right)\left(4-\sqrt{5}\right)}+\dfrac{\sqrt{5}\left(\sqrt{3}+2\right)}{2+\sqrt{3}}\)
\(=\dfrac{8\sqrt{5}+8}{5-1}-\dfrac{88-22\sqrt{5}}{16-5}+\sqrt{5}\)
\(=\dfrac{8\sqrt{5}+8}{4}-\dfrac{88-22\sqrt{5}}{11}+\sqrt{5}\)
\(=2\sqrt{5}+2-8+2\sqrt{5}+\sqrt{5}=5\sqrt{5}-6\)

5 tháng 12 2017

= 1,41(đã làm tròn)

17 tháng 8 2020

Bài làm:

a) \(A=\left(\sqrt{3}+1\right)^2+\frac{5}{4}\sqrt{48}-\frac{2}{\sqrt{3+1}}\)

\(A=3+2\sqrt{3}+1+\sqrt{\frac{25.48}{16}}-\frac{2}{\sqrt{4}}\)

\(A=4+2\sqrt{3}+\sqrt{25.3}-\frac{2}{2}\)

\(A=4+2\sqrt{3}+5\sqrt{3}-1\)

\(A=3+7\sqrt{3}\)

b) \(\frac{4}{3-\sqrt{5}}-\frac{3}{\sqrt{5}+\sqrt{2}}-\frac{1}{\sqrt{2}-1}\)

\(=\frac{4\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}-\frac{3\left(\sqrt{5}-\sqrt{2}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)}-\frac{\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)

\(A=\frac{4\left(3+\sqrt{5}\right)}{9-5}-\frac{3\left(\sqrt{5}-\sqrt{2}\right)}{5-2}-\frac{\sqrt{2}+1}{2-1}\)

\(A=3+\sqrt{5}-\sqrt{5}+\sqrt{2}-\sqrt{2}-1\)

\(A=2\)

17 tháng 8 2020

Phần b mình viết nhầm tên thành A, bn sửa thành B nhé

c) \(C=\sqrt{4-2\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)

\(C=\sqrt{3-2\sqrt{3}+1}-\sqrt{4+4\sqrt{3}+3}\)

\(C=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(C=\sqrt{3}-1-2-\sqrt{3}\)

\(C=-3\)

1 tháng 10 2021

a) \(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{45}+\dfrac{5-\sqrt{5}}{\sqrt{5}}=\sqrt{5}+\sqrt{5}+\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}}=\sqrt{5}+\sqrt{5}+\sqrt{5}-1=-1+3\sqrt{5}\)

b) \(\sqrt{7-4\sqrt{3}}+\sqrt{\left(1+\sqrt{3}\right)^2}=\sqrt{\left(2-\sqrt{3}\right)^2}+1+\sqrt{3}=2-\sqrt{3}+1+\sqrt{3}=3\)

a: \(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{45}+\dfrac{5-\sqrt{5}}{\sqrt{5}}\)

\(=\sqrt{5}+\sqrt{5}+\sqrt{5}-1\)

\(=3\sqrt{5}-1\)

b: \(\sqrt{7-4\sqrt{3}}+\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=2-\sqrt{3}+\sqrt{3}+1\)

=3

AH
Akai Haruma
Giáo viên
11 tháng 8 2021

Câu 1,2 bạn đã đăng và có lời giải rồi

Câu 3:

\(=\frac{(\sqrt{3})^2+(2\sqrt{5})^2-2.\sqrt{3}.2\sqrt{5}}{\sqrt{2}(\sqrt{3}-2\sqrt{5})}=\frac{(\sqrt{3}-2\sqrt{5})^2}{\sqrt{2}(\sqrt{3}-2\sqrt{5})}=\frac{\sqrt{3}-2\sqrt{5}}{\sqrt{2}}\)

17 tháng 8 2020

\(C=\sqrt{4-2\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)

\(\Leftrightarrow C=\sqrt{3-2\sqrt{3}+1}-\sqrt{4+4\sqrt{3}+3}\)

\(\Leftrightarrow C=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(\Leftrightarrow C=\left|\sqrt{3}-1\right|-\left|2+\sqrt{3}\right|\)

\(\Leftrightarrow C=\sqrt{3}-1-2-\sqrt{3}\)

\(\Leftrightarrow C=-3\)

Bài 20:

a) \(\sqrt{9-4\sqrt{5}}\cdot\sqrt{9+4\sqrt{5}}=\sqrt{81-80}=1\)

b) \(\left(2\sqrt{2}-6\right)\cdot\sqrt{11+6\sqrt{2}}=2\left(\sqrt{2}-3\right)\left(3+\sqrt{2}\right)\)

\(=2\left(2-9\right)=2\cdot\left(-7\right)=-14\)

c: \(\sqrt{2}\cdot\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)

\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)

=2

d) \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}-\sqrt{2}\right)\left(2+\sqrt{3}\right)\)

\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}-1\right)\left(2+\sqrt{3}\right)\)

\(=\left(4-2\sqrt{3}\right)\left(2+\sqrt{3}\right)\)

\(=8+4\sqrt{3}-4\sqrt{3}-6\)

=2

6 tháng 8 2021

cảm ơn anh ạ