Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho a+b+c=a^2+b^2+c^2=1 và x:y:z=a:b:c.c/m(x+y+z)^2=x^2+y^2+z^2
câu hỏi max tử tế r phải ko ae
Ta có: \(x:y:z=a:b:c\Leftrightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}\Leftrightarrow\frac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\left(x+y+z\right)^2\)(1)
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\Leftrightarrow\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=x^2+y^2+z^2\)(2)
Từ (1) và (2) ta có: \(\left(x+y+z\right)^2=x^2+y^2+z^2\)
Ta có: \(x:y:z=a:b:c\Leftrightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}\Leftrightarrow\frac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\left(x+y+z\right)^2\)(1)
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\Leftrightarrow\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=x^2+y^2+z^2\)(2)
Từ (1) và (2) ta có: \(\left(x+y+z\right)^2=x^2+y^2+z^2\)