22/1.3 + 32/2.4 + 42/3.5 .........20112/2010.2012
LÀM NHANH MK SẼ TÍCH CHO
AI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2^2}{1\times3}\times\dfrac{3^2}{2.4}\times\dfrac{4^2}{3.5}\times\dfrac{5^2}{4.6}=\dfrac{2^2.3^2.4^2.5^2}{1.3.2.4.3.5.4.6}=\dfrac{2^2.3^2.4^2.5^2}{1.2.3.3.4.4.5.2.3}=\dfrac{2^2.3^2.4^2.5^2}{3^3.2^2.4^2.5.1}=\dfrac{5}{3.1}=\dfrac{5}{3}\)
\(\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot\dfrac{5^2}{4.6}\\ =\dfrac{2^2\cdot3^2\cdot4^2\cdot5^2}{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot4\cdot6}\\ =\dfrac{2^2\cdot3^2\cdot4^2\cdot5^2}{1\cdot2\cdot4^2\cdot4^2\cdot5\cdot6}\\ =\dfrac{2\cdot5}{6}=\dfrac{5}{3}\)
Đặt A = \(\frac{1.3+2}{2^2}+\frac{2.4+2}{3^2}+\frac{3.5+2}{4^2}+...+\frac{2010.2012+2}{2011^2}+\frac{2015.2017+2}{2016^2}\)
\(=\frac{\left(2-1\right)\left(2+1\right)+2}{2^2}+\frac{\left(3-1\right)\left(3+1\right)}{3^2}+...+\frac{\left(2016-1\right)\left(2016+1\right)+2}{2016^2}\)
\(=\frac{2^2-1+2}{2^2}+\frac{3^2-1+2}{3^2}+....+\frac{2016^2-1+2}{2016^2}\)
\(=\frac{2^2+1}{2^2}+\frac{3^2+1}{3^2}+...+\frac{2016^2+1}{2016^2}\)
\(=\left(1+1+...+1\right)+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}\right)\)(2015 hạng tử 1)
\(=2015+\left(\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{2016.2016}\right)\)
\(< 2015+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2015.2016}\right)\)
\(=2015+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+...+\frac{1}{2015}-\frac{1}{2016}\right)=2015+\left(1-\frac{1}{2016}\right)\)
= 2015 + 1 + 1/2016
= 2016 + 1/2016 < 2017
=> A < 2017 (ĐPCM)
Ta có :
\(1+\frac{1}{n\left(n+2\right)}=\frac{n\left(n+2\right)+1}{n\left(n+2\right)}=\frac{n^2+2n+1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)
Áp dụng ta được :
\(H=\frac{2.2}{1.3}\cdot\frac{3.3}{2.4}\cdot\frac{4.4}{3.5}\cdot\frac{5.5}{4.6}\cdot\frac{6.6}{5.7}\)
\(=\frac{\left(2.3.4.5.6\right)\left(2.3.4.5.6\right)}{\left(2.3.4.5\right)\left(3.4.5.6.7\right)}=\frac{6.2}{7}=\frac{12}{7}\)
A = 1( 2+1 ) + 2( 3+1 ) + 3( 4+1 ) +...+ 97( 98+1 ) + 98( 99+1 )
A = 1.2 + 1.1 + 2.3 + 2.1 + 3.4 + 3.1 +...+ 97.98 +97.1 + 98.99 + 98.1
A = ( 1.2 + 2.3 + 3.4 +...+ 97.98 + 98.99 ) + ( 1 + 2 + 3 +....+ 97 + 98)
A = 323400 + 4851 = 328251
(1.2+2.3+3.4......97.98+98.99)+(1+2+3+....98)
=323400+4851=328251
tich nha
Link nè:https://olm.vn/hoi-dap/detail/1446638519.html
Mk không có đủ thời gian để trình bày lại nên bn đọc bài mk làm và tham khảo nha
Chúc bn học tốt
sao trang trắng nhìu quá zậy
lỗi đánh máy bạn ạ