Chứng minh :
\(\left(n+1\right)\left(n+2\right)\left(n+3\right)\cdot....\cdot2n\) \(⋮\) \(2^n\) \(\left(n\inℕ^∗\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1.2.3 + 2.3.4 + 3.4.5 ... + n(n + 1)(n + 2)
4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + ... + n(n + 1)(n + 2).4
4A = 1.2.3.4 + 2.3.4(5 - 1) + 3.4.5.(6 - 2)+ ... + n(n + 1)(n + 2)[(n + 3) - (n - 1)]
4A = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + n(n + 1)(n + 2)(n + 3) - (n-1)n(n+1)(n+2)
4A = n(n+1)(n+2)(n+3)
A = n(n + 1)(n+2)(n + 3) : 4
\(Q=n^3+\left(n+1\right)^3+\left(n+2\right)^3⋮9\)
\(Q=n^3+n^3+3n^2+3n+1+n^3+6n^2+12n+8\)
\(Q=3n^3+9n^2+15n+9\)
\(Q=3n\left(n^2+5\right)+9\left(n^2+1\right)\)
mà \(\left\{{}\begin{matrix}9\left(n^2+1\right)⋮9\\3n⋮3\\n^2+5⋮3\end{matrix}\right.\left(\forall n\inℕ^∗\right)\)
\(\Rightarrow Q=3n\left(n^2+5\right)+9\left(n^2+1\right)⋮9,\forall n\inℕ^∗\)
\(\Rightarrow dpcm\)
Ko có điều kiện n tự nhiên (hoặc nguyên) thì bạn nhờ ai cũng thế thôi, đầu hàng hết vì ko tự nhiên thì nó làm gì có quy luật để mà giải
Chỉ chứng minh được với điều kiện \(n\in N\)* (với \(n\) nguyên âm thì hiển nhiên quy luật trên tử số có vấn đề về mặt sắp xếp, \(n+1< n+2\) nhưng \(n+1>2n\) , còn với n không nguyên thì nó chẳng có quy luật nào cho tử số cả, \(n=0\) thì hmmm, tử số ko có quy luật nhưng chắc chắn =0)
Ta sử dụng quy nạp:
- Với \(n=1\Rightarrow x=\frac{2}{2^1}=1\) nguyên (đúng)
- Với \(n=2\Rightarrow x=\frac{3.4}{2^2}=3\) nguyên (đúng)
- Giả sử \(x\) là số nguyên với \(n=k\) tức là:
\(\frac{\left(k+1\right)\left(k+2\right)...\left(2k-1\right)2k}{2^k}\) nguyên
- Ta cần chứng minh \(x\) cũng nguyên với \(n=k+1\)
Thật vậy, khi đó:
\(x=\frac{\left(k+2\right)\left(k+3\right)...\left(2k+1\right)\left(2k+2\right)}{2^{k+1}}=\frac{\left(k+1\right)\left(k+2\right)...2k}{2^k}.\frac{\left(2k+1\right)\left(2k+2\right)}{2.\left(k+1\right)}\)
\(=\frac{\left(k+1\right)\left(k+2\right)...2k}{2^k}.\left(2k+1\right)\)
Do \(\frac{\left(k+1\right)\left(k+2\right)...2k}{2^k}\) nguyên và \(2k+1\) nguyên
\(\Rightarrow x=\frac{\left(k+1\right)\left(k+2\right)...2k}{2^k}\left(2k+1\right)\) nguyên (đpcm)
VP:
\(\frac{1}{n\left(n-1\right)}-\frac{1}{n\left(n+1\right)}\)
\(=\frac{n\left(n+1\right)}{\left[n\left(n-1\right)\right]\left[n\left(n+1\right)\right]}-\frac{n\left(n-1\right)}{\left[n\left(n-1\right)\right]\left[n\left(n+1\right)\right]}\)
\(=\frac{n^2+n}{\left(n^2-n\right)\left(n^2+n\right)}-\frac{n^2-n}{\left(n^2-n\right)\left(n^2+n\right)}\)
\(=\frac{\left(n^2+n\right)-\left(n^2-n\right)}{\left(n^4-n^3+n^3-n^2\right)-\left(n^4-n^3+n^3-n^2\right)}\)
\(=\frac{2n}{\left(n^4-n^2\right)-\left(n^4-n^2\right)}\)
\(=\frac{2n}{0}\)
Ủa! Hình như tớ lm sai ở đâu đó.
Với n = 1 => Ta có: (1+1) = 2 chia hết cho 21
Giả sử n = k thì (k+1).(k+2)...2k chia hết cho 2k
Cần chứng minh: (k+1+1).(k+1+2)...2(k+1) chia hết cho 2k+1
Ta có: (k+1+1).(k+1+2)...2(k+1) = (k+2).(k+3)....2k.2(k+1) = 2.(k+1).(k+2)...2k chia hết cho 2.2k = 2k+1
Vậy (n+1)(n+2)....2n chia hết cho 2n (với mọi n thuộc N*)
Nhân \(\left(n+1\right)\left(n+2\right)\left(n+3\right)....2n\) với \(2.4.6.8...2n\)
Ta được: \(\left(2.4.6...2n\right)\left(n+1\right)\left(n+2\right)...2n\)
=\(\left(1.2.3..n\right).2^n\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n⋮2^n\)
\(\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n⋮2^n\)