Cho tam giác ABC. Kẻ đường AH vuông góc với BC tại H. Gọi M là trung điểm của BC. Trên tia AH kéo dài lấy điểm E sao cho HE=HA, trên tia AM kéo dài lấy điểm F sao cho MA=MF. Nối BE; CF; EF
a) chứng minh BE=CF
b) chứng minh ME=MF
c) chứng minh AC=BF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta\)AHB và \(\Delta\)DHB có:
^AHB = ^DHB ( 1v )
HA = HD ( giả thiết )
MH chung
=> \(\Delta\)AHB = \(\Delta\)DHB ( c.g.c)
b) Từ (a) => ^ABH = ^DHB => BH là phân giác ^ABD
Vì \(\Delta\)ABC nhọn => H nằm trong đoạn BC
=> BC là phân giác ^ABD
c) NF vuông BC
AH vuông BC
=> NF // AH
=> ^NFM = ^HAM ( So le trong )
Lại có: ^HMA = NMF ( đối đỉnh ) và MA = MF ( giả thiết )
=> \(\Delta\)NFM = \(\Delta\)HAM ( g.c.g)
=> NF = AH ( 2)
Từ ( a) => AH = HD ( 3)
Từ (2) ; (3) => NF = HD
a, Bạn chứng minh : tam giác ABH=EBH ( hai cạnh góc vuông) => AB=BE
tam giác ABM=CMF ( c.g.c ) => CF=AB
=> BE=CF=AB
b, Chứng minh tam giác AHM=EHM ( hai cạnh góc vuông )
=> AM=EM mà AM=AF nên ME=MF (đpcm)