K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

\(\left(1-x\right)\left(1+x\right)\left(1+x^2\right)\left(1+x^4\right)...\left(1+x^{20}\right)\)

\(=\left(1-x^2\right)\left(1+x^2\right)...\left(1+x^{20}\right)\)

\(=\left(1-x^{20}\right)\left(1+x^{20}\right)=1-x^{40}\)

Bài 4:

1: \(\left(x-1\right)\left(x^2+x+1\right)-x^3-6x=11\)

=>\(x^3-1-x^3-6x=11\)

=>-6x-1=11

=>-6x=11+1=12

=>\(x=\dfrac{12}{-6}=-2\)

2: \(16x^2-\left(3x-4\right)^2=0\)

=>\(\left(4x\right)^2-\left(3x-4\right)^2=0\)

=>\(\left(4x-3x+4\right)\left(4x+3x-4\right)=0\)

=>(x+4)(7x-4)=0

=>\(\left[{}\begin{matrix}x+4=0\\7x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{4}{7}\end{matrix}\right.\)

3: \(x^3-x^2-3x+3=0\)

=>\(\left(x^3-x^2\right)-\left(3x-3\right)=0\)

=>\(x^2\left(x-1\right)-3\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(x^2-3\right)=0\)

=>\(\left[{}\begin{matrix}x-1=0\\x^2-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)

4: \(\dfrac{x-1}{x+2}=\dfrac{x+2}{x+1}\)(ĐKXĐ: \(x\notin\left\{-2;-1\right\}\))

=>\(\left(x+2\right)^2=\left(x-1\right)\left(x+1\right)\)

=>\(x^2+4x+4=x^2-1\)

=>4x+4=-1

=>4x=-5

=>\(x=-\dfrac{5}{4}\left(nhận\right)\)

5: ĐKXĐ: \(x\notin\left\{0;-1\right\}\)

\(\dfrac{1}{x}+\dfrac{2}{x+1}=0\)

=>\(\dfrac{x+1+2x}{x\left(x+1\right)}=0\)

=>3x+1=0

=>3x=-1

=>\(x=-\dfrac{1}{3}\left(nhận\right)\)

6: ĐKXĐ: \(x\notin\left\{0;3\right\}\)

\(\dfrac{9-x^2}{x}:\left(x-3\right)=1\)

=>\(\dfrac{-\left(x^2-9\right)}{x\left(x-3\right)}=1\)

=>\(\dfrac{-\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}=1\)

=>\(\dfrac{-x-3}{x}=1\)

=>-x-3=x

=>-2x=3

=>\(x=-\dfrac{3}{2}\left(nhận\right)\)

Bài 3:

3: \(6x\left(x-y\right)-9y^2+9xy\)

\(=6x\left(x-y\right)+9xy-9y^2\)

\(=6x\left(x-y\right)+9y\left(x-y\right)\)

\(=\left(x-y\right)\left(6x+9y\right)\)

\(=3\left(2x+3y\right)\left(x-y\right)\)

Bài 4:

loading...

loading...

loading...

Đặt \(x^2+1=a\)

Ta có: \(\dfrac{1}{x^2-x+1}-\dfrac{x^2+2}{x^2+1}+1\)

\(=\dfrac{1}{a-x}+\dfrac{a+1}{a}+1\)

\(=\dfrac{a}{a\left(a-x\right)}+\dfrac{\left(a+1\right)\left(a-x\right)}{a\left(a-x\right)}+\dfrac{a\left(a-x\right)}{a\left(a-x\right)}\)

\(=\dfrac{a+a^2-ax+a-x+a^2-ax}{a\left(a-x\right)}\)

\(=\dfrac{2a^2+2a-2ax-x}{a\left(a-x\right)}\)

\(=\dfrac{2\left(x^2+1\right)^2+2\left(x^2+1\right)-2x\left(x^2+1\right)-x}{\left(x^2+1\right)\left(x^2+1-x\right)}\)

\(=\dfrac{2\left(x^4+2x^2+1\right)+2x^2+2-2x^3-2x-x}{\left(x^2+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{2x^4+4x^2+2+2x^2+2-2x^3-3x}{\left(x^2+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{2x^4-2x^3+6x^2-3x+4}{\left(x^2+1\right)\left(x^2-x+1\right)}\)

 

2 tháng 1 2023

a)

\(\dfrac{x}{x-2}+\dfrac{2}{2-x}\\ =\dfrac{x}{x-2}-\dfrac{2}{x-2}\\ =\dfrac{x-2}{x-2}\\ =1\)

b)

\(\dfrac{x^2}{x^2}-1\\ =1-1\\ =0??\)

 

viết thiếu mới sửa:>

14 tháng 8 2020

Xin phép sửa đề:

Ta có: \(\frac{3x+1}{\left(x-1\right)^2}-\frac{1}{x+1}=\frac{x+3}{1-x^2}\) \(\left(x\ne\pm1\right)\)

\(\Leftrightarrow\frac{\left(3x+1\right)\left(x+1\right)-\left(1-x\right)^2}{\left(1-x\right)^2\left(x+1\right)}=\frac{\left(x+3\right)\left(1-x\right)}{\left(1-x\right)^2\left(x+1\right)}\)

\(\Rightarrow3x^2+4x+1-1+2x-x^2=-x^2-2x+3\)

\(\Leftrightarrow3x^2+8x-3=0\)

\(\Leftrightarrow\left(3x^2+9x\right)-\left(x+3\right)=0\)

\(\Leftrightarrow3x\left(x+3\right)-\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\3x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{1}{3}\end{cases}}\)

Vậy tập nghiệm PT \(S=\left(-3;\frac{1}{3}\right)\)

31 tháng 12 2021

\(=\left(\dfrac{1}{x\left(x+1\right)}+\dfrac{x-2}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)

\(=\dfrac{x^2-2x+1}{x\left(x+1\right)}:\dfrac{x^2-2x+1}{x}\)

\(=\dfrac{1}{x+1}\)

23 tháng 10 2022

(1-x)^2-x(x-1)