CHO HÌNH THANG ABCD,ab//cd
I,F là trung điểm AD và BC.Các đương phân giác góc A và D cắt nhau tạiE
Các đường phân giác góc B và C cắt nau tại S
CM;góc AED=90,BSC=90
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC và BAD có :
AB : chung
\(\widehat{BAD}=\widehat{ABC}\)
AD = BC
( ABCD là hình thang cân )
\(\Rightarrow\Delta ABC=\Delta BAD\)
\(\Rightarrow\widehat{BAC}=\widehat{ABD}\)
\(\Delta AOB\)CÓ : \(\widehat{OAB}=\widehat{OBA}\Rightarrow\Delta AOB\)cân tại O nên OA = OB
ˆDAE=ˆA2;ˆADE=ˆD2⇒ˆDAE+ˆADE=ˆA+ˆD2DAE^=A^2;ADE^=D^2⇒DAE^+ADE^=A^+D^2
Mà ˆA+ˆD=180oA^+D^=180o (Vì AB//CD nên ^A và ^D là 2 góc trong cùng phía nên bù nhau)
⇒ˆDAE+ˆADE=ˆA+ˆD2=180o2=90o⇒DAE^+ADE^=A^+D^2=180o2=90o
Xét tg ADE có ^DAE+^ADE=90 => ^AED=180-(^DAE+^ADE)=180-90=90
Chứng minh tương tự cũng có ^BFC=90
b/
Xét tg ADP có DE là phân giác cua ^D
^AED=90 => DE vuông góc với AP
=> DE vùa là phân giác vừa là đường cao => tg ADP cân tại D => AD=DP
Chứng minh tương tự cũng có tg BPC cân tại C => BC=CP
=> AD+BC=DP+CP=DC
c/
Xét tg cân ADP có DE là đường cao => DE là đường trung trực thuộc cạnh AP => AE=PE
Chứng minh tương tự với tg cân BPC => BF=PF
=> EF là đường trung bình của tg ABP (đường thẳng đi qua trung điểm 2 cạnh của 1 tg là đường trung bình)
=> EF//AB//CD
Xét tg ADP có EF//CD và AF=PF => EF là đường trung bình của tg ADP => EF đi qua trung điểm của AD
Chứng minh tương tự cuãng có EF đi qua trung ddiemr của BC
=> EF là đường trung bình của hình thang ABCD