Bài 1: Cho tam giác ABC góc B = 600 ;góc C = 650. Kẻ tia Ax là tia đối của tia AB. Vẽ tia Ay song song với BC và tia Ay nằm giữa hai tia Ax, AC.
a) Tính góc BAC
b) Tính góc BAy
c) Chứng minh tia Ay là tia phân giác góc xAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(A+B+C=180^0\Rightarrow A=180^0-\left(B+C\right)=70^0\)
Kẻ đường cao BD
Trong tam giác vuông ABD:
\(cotA=\dfrac{AD}{BD}\Rightarrow AD=BD.cotA\)
Trong tam giác vuông BCD:
\(cotC=\dfrac{CD}{BD}\Rightarrow CD=BD.cotC\)
\(\Rightarrow AD+CD=BD.cotA+BD.cotC\)
\(\Rightarrow AC=BD.\left(cotA+cotC\right)\)
\(\Rightarrow BD=\dfrac{AC}{cotA+cotC}\)
\(\Rightarrow S_{ABC}=\dfrac{1}{2}BD.AC=\dfrac{1}{2}.\dfrac{AC^2}{cotA+cotC}=\dfrac{35^2}{2\left(cot70^0+cot50^0\right)}\approx509,1\left(cm^2\right)\)
Kẻ AH vuông góc với BC
Trong tam giác vuông AHC ta có:
cosC=HC/AC⇒HC=cosC.AC=cos50.35≈22cm
⇒AH=√AC^2−HC^2=√35^2−22^2=√741cm
Trong tam giác vuông AHB ta có:
sinB=AH/AB⇒AB=AH/sinB=√741/sin60=2√247cm
⇒HB=√AB^2−AH^2=√(2√247)^2−741=√247cm
Vậy SABC=AH(HB+HC)/2=√741.(√247+22)/2≈513\(cm^2\)
ta có:
tam giác ABC có góc A = 60 độ
=> Tam giác ABC đều
Mà tam giác đều là tam giác có số đo mỗi góc = 60 độ
=> tam giác ABC có góc A = góc B = góc C = 60 độ
Vì tia phân giác góc B và góc C cắt nhai tại O
nên góc B = góc C = 60/2= 30 độ
Vậy góc BOC = 30 độ
a: Xét ΔBAM có BA=BM và góc ABM=60 độ
nên ΔBAM đều
b: Xét ΔBAD và ΔBMD có
BA=BM
góc ABD=góc MBD
BD chung
=>ΔBAD=ΔBMD
=>góc BMD=góc BAD=90 độ
=>DM vuông góc BC
1: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
2: Ta có: ΔABD=ΔEBD
nên BA=BE
hay ΔBAE cân tại B
mà \(\widehat{ABE}=60^0\)
nên ΔABE đều
a,Vì góc A+B+C=180(định lí)
A=180-60-5=55(theo bài ra)
b,Vì Ay // CB nên CAy=ACB(định lí)
vậy CAy=65
mà CÂy+A=BAy
nên BAy=65+55=120