Cho tam giác ABC có B =90 độ. Vẽ BH vuông góc AC; HK vuông góc BC; KP vuông góc AC
a) So sánh góc KHC và góc BAC;góc PKC và góc HBC;góc ABH và góc BHK
b) Chứng minh góc CHK= góc HBC
Vẽ hình giúp mình luôn nha.Cảm ơn!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{BAH}\) chung
Do đó: ΔAHB=ΔAKC
=>AH=AK
b: Ta có: ΔAHB=ΔAKC
=>\(\widehat{ABH}=\widehat{ACK}\)
=>\(\widehat{KBI}=\widehat{HCI}\)
Ta có: AK+KB=AB
AH+HC=AC
mà AK=AH và AB=AC
nên KB=HC
Xét ΔIKB vuông tại K và ΔIHC vuông tại H có
KB=HC
\(\widehat{KBI}=\widehat{HCI}\)
Do đó: ΔIKB=ΔIHC
c: ta có: ΔIKB=ΔIHC
=>IB=IC
Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
Do đó: ΔABI=ΔACI
=>\(\widehat{BAI}=\widehat{CAI}\)
=>AI là phân giác của góc BAC
d: Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
ta có: IB=IC
=>I nằm trên đường trung trực của BC(2)
ta có: MB=MC
=>M nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,I,M thẳng hàng
Ta có tam giác ABD = tam giác HBD ( cạnh huyền - góc nhọn )
=> góc ABD = góc HBD = 30 độ
Xét tam giác ABC ta có
góc ABC + góc ACB + góc BAC = 180 độ
=> góc ACB = 30 độ
Ta có góc BDH = 90 độ - 30 độ = 60 độ
góc CDH = 90 độ - 30 độ 60 độ
Tam giác BHD = tam giác CHD ( g.c.g )
=> BH = CH ( hai cạnh tương ứng ) ( 1 )
Tam giác CHD vuông tại H => CD > CH ( trong tam giác vuông cạnh huyền là cạnh lớn nhất ) ( 2 )
Từ (1) và (2) => BH < CD
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: AH=12cm
c: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAMH=ΔANH
Suy ra: AM=AN
d: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
Bài 1:
A C B
Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)
Độ dài cạnh AC: 28 - 7 = 21 (cm)
Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:
\(BC^2=AC^2+AB^2\)
Hay \(BC^2=21^2+28^2\)
\(\Rightarrow BC^2=441+784\)
\(\Rightarrow BC^2=1225\)
\(\Rightarrow BC=35\left(cm\right)\)
Bài 2:
A B C D
Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:
\(AB^2=AD^2+BD^2\)
\(\Rightarrow AD^2=AB^2-BD^2\)
Hay \(AD^2=17^2-15^2\)
\(\Rightarrow AD^2=289-225\)
\(\Rightarrow AD^2=64\)
\(\Rightarrow AD=8\left(cm\right)\)
Trong tam giác ABC có:
\(AD+DC=AC\)
\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)
Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:
\(BC^2=BD^2+DC^2\)
Hay \(BC^2=15^2+9^2\)
\(\Rightarrow BC^2=225+81\)
\(\Rightarrow BC^2=306\)
\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)
A B C H 20 0
Giải: Xét t/giác BHC có góc H = 900
=> góc HBC + góc C = 900 (...)
=> góc C = 900 - góc HBC = 900 - 200 = 700
Vì t/giác ABC cân tại A => góc B = góc C
Xét t/giác ABC có góc A + góc B + góc C = 1800 (tổng 3 góc của 1 t/giác)
=> góc A = 1800 - 2.góc C = 1800 - 2.700 = 1800 - 1400 = 400
Vậy góc A = 400