K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Hệ số a là: a=1

\(f(0) = {0^2} - 4.0 + 3 = 3\)

\(f(1) = {1^2} - 4.1 + 3 = 0\)

\(f(2) = {2^2} - 4.2 + 3 =  - 1\)

\(f(3) = {3^2} - 4.3 + 3 = 0\)

\(f(4) = {4^2} - 4.4 + 3 = 3\)

=> f(0); f(4) cùng dấu với hệ số a; f(2) khác dấu với hệ số a

b) Nhìn vào đồ thị ta thấy

- Trên khoảng \(\left( { - \infty ;1} \right)\) đồ thị nằm phía trên trục hoành

- Trên khoảng \(\left( {1;3} \right)\), đồ thị nằm phía dưới trục hoành

- Trên khoảng \(\left( {3; + \infty } \right)\), đồ thị nằm phía trên trục hoành

c) - Trên khoảng \(\left( { - \infty ;1} \right)\) đồ thị nằm phía trên trục hoành => f(x)>0, cùng dầu với hệ số a

- Trên khoảng \(\left( {1;3} \right)\), đồ thị nằm phía dưới trục hoành => f(x) <0, khác dấu với hệ số a

- Trên khoảng \(\left( {3; + \infty } \right)\), đồ thị nằm phía trên trục hoành => f(x)>0, cùng dấu với hệ số a

24 tháng 9 2023

Tham khảo:

a) Ta có: \(f(0) = a{.0^2} + b.0 + c = 1 \Rightarrow c = 1.\)

Lại có:

 \(f(1) = a{.1^2} + b.1 + c = 2 \Rightarrow a + b + 1 = 2\)

\(f(2) = a{.2^2} + b.2 + c = 5 \Rightarrow 4a + 2b + 1 = 5\)

Từ đó ta có hệ phương trình \(\left\{ \begin{array}{l}a + b + 1 = 2\\4a + 2b + 1 = 5\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}a + b = 1\\4a + 2b = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\end{array} \right.\)(thỏa mãn điều kiện \(a \ne 0\))

Vậy hàm số bậc hai đó là \(y = f(x) = {x^2} + 1\)

b) Tập giá trị \(T = \{ {x^2} + 1|x \in \mathbb{R}\} \)

Vì \({x^2} + 1 \ge 1\;\forall x \in \mathbb{R}\) nên \(T = [1; + \infty )\)

Đỉnh S có tọa độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 0}}{{2.1}} = 0;{y_S} = f(0) = 1\)

Hay \(S\left( {0;1} \right).\)

Vì hàm số bậc hai có \(a = 1 > 0\) nên ta có bảng biến thiên sau:

Hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và đồng biến trên khoảng \(\left( {0; + \infty } \right)\)

25 tháng 2 2021

a) Đồ thị của hàm số đi qua điểm A(2;1)

\(\Rightarrow x=2;y=1\)

Mà \(y=ax\)

\(\Rightarrow a=\dfrac{y}{x}=\dfrac{1}{2}\)

b) \(f\left(-2\right)=\dfrac{1}{2}\cdot\left(-2\right)=-1\\ f\left(4\right)=\dfrac{1}{2}\cdot4=2\\ f\left(0\right)=\dfrac{1}{2}\cdot0=0\)

Vậy \(f\left(-2\right)=-1\\ f\left(4\right)=2\\ f\left(0\right)=0\)

a) Vì đồ thị hàm số y=ax đi qua điểm A(2;1) nên 

Thay x=2 và y=1 vào hàm số y=ax,ta được:

\(2a=1\)

hay \(a=\dfrac{1}{2}\)

Vậy: \(a=\dfrac{1}{2}\)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Hàm số \(y =  - 3{x^2}\) là hàm số bậc hai.

\(y =  - 3.{x^2} + 0.x + 0\)

Hệ số \(a =  - 3,b = 0,c = 0\).

b) Hàm số \(y = 2x\left( {{x^2} - 6x + 1} \right)\)\( \Leftrightarrow y = 2{x^3} - 12{x^2} + 2x\) có số mũ cao nhất là 3 nên không là hàm số bậc hai.

c) Hàm số \(y = 4x\left( {2x - 5} \right)\)\( \Leftrightarrow y = 8{x^2} - 20x\) có số mũ cao nhất là 2 nên là hàm số bậc hai.

Hệ số \(a = 8,b =  - 20,c = 0\)

4 tháng 12 2016

\(f\left(0\right)=5=>c=5;f\left(2\right)=4.a+2.b+5=0;f\left(5\right)=25a+5b+5=0\Leftrightarrow5a+b+1=0\)

\(\hept{\begin{cases}4a+2b+5=0\\5a+b+1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4a+2b+5=0\\10a+2b+2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4a+2b+5=0\\6a-3=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=-\frac{7}{2}\\a=\frac{1}{2}\end{cases}}\)

\(f\left(x\right)=\frac{1}{2}x^2-\frac{7}{2}x+5\)

b)

\(f\left(-1\right)=\frac{1}{2}+\frac{7}{2}+5=9=>P\left(-1;3\right)kothuocHS\)

\(f\left(\frac{1}{2}\right)=\frac{1}{2}.\frac{1}{4}-\frac{7}{2}.\frac{1}{2}+5=\frac{\left(1-14+5.8\right)}{8}=\frac{27}{8}=>Qkothuoc\)

c)

\(\frac{1}{2}x^2-\frac{7}{2}x+5=-3\Rightarrow\frac{1}{2}x^2-\frac{7}{2}x+8=0\)

\(x^2-7x+16=0\Leftrightarrow\left(x^2-2.\frac{7}{2}x+\frac{49}{4}\right)+\frac{15}{4}\)vo nghiem

15 tháng 3 2021

a) Ta có: f(2)-f(-1)=(m-1).2-[(m-1).(-1)]=7

<=> 2m-2+m-1=7 <=> 3m=10 => m=10/3

b) m=5 => f(x)=4x

 => f(3-2x)=4(3-2x)=20 <=> 3-2x=5 => 2x=-2 => x=-1

a: \(f\left(x\right)=4x+a-\sqrt{3}\left(2x+1\right)\)

\(=4x+a-2\sqrt{3}\cdot x-\sqrt{3}\)

\(=x\left(4-2\sqrt{3}\right)-\sqrt{3}+a\)

Vì \(4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2>0\)

nên hàm số \(y=f\left(x\right)=x\left(4-2\sqrt{3}\right)+a-\sqrt{3}\) luôn đồng biến trên R

b: f(x)=0

=>\(x\left(4-2\sqrt{3}\right)+a-\sqrt{3}=0\)

=>\(x\left(4-2\sqrt{3}\right)=-a+\sqrt{3}\)

=>\(x=\dfrac{-a+\sqrt{3}}{4-2\sqrt{3}}\)

23 tháng 11 2021

\(a,f\left(-3\right)=9;f\left(-\dfrac{1}{2}\right)=\dfrac{1}{4};f\left(0\right)=0\\ g\left(1\right)=2;g\left(2\right)=1;g\left(3\right)=0\\ b,2f\left(a\right)=g\left(a\right)\\ \Leftrightarrow2a^2=3-a\\ \Leftrightarrow2a^2+a-3=0\\ \Leftrightarrow2a^2-2a+3a-3=0\\ \Leftrightarrow2a\left(a-1\right)+3\left(a-1\right)=0\\ \Leftrightarrow\left(2a+3\right)\left(a-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=1\\a=-\dfrac{3}{2}\end{matrix}\right.\)