Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a;b;c là các số thực khác nhau và khác 0 thỏa mãn
a2- b = b2 - c = c2 - a. Tính giá trị biểu thức P = (a+b)(b+c)(c+a)
vì a,b,c là 3 số thực khác nhau và khác 0 nên a-b, b-c, a-c khác 0. Do đó:
a2- b= b2- c <=> a2 -b2 =b -c <=>(a-b)(a+b)=b-c => a+b =(b-c)/(a-b)
cmtt ta có b+c=(c-a)/(b-c) ; c+a = (a-b)/(c-a). Như vậy ta tính được P=1
vì a,b,c là 3 số thực khác nhau và khác 0 nên a-b, b-c, a-c khác 0. Do đó:
a2- b= b2- c <=> a2 -b2 =b -c <=>(a-b)(a+b)=b-c => a+b =(b-c)/(a-b)
cmtt ta có b+c=(c-a)/(b-c) ; c+a = (a-b)/(c-a). Như vậy ta tính được P=1