cho a;b;c là 3 cạnh của 1 tam giác
cm: ab +bc+ca=<a2+b2+c2 <2(ab+bc+ca)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó
A = 200*
Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0
NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.
Như vậy, đề sai.
ab+bc+ca \(\le\) a^2+b^2+c^2
<=> a^2+b^2+c^2-ab-bc-ca \(\ge\) 0
<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca \(\ge\) 0
<=> (a^2+b^2-2ab) + (b^2+c^2-2bc) + (c^2+a^2-2ca) \(\ge\)0
<=> (a-b)^2 + (b-c)^2 + (c-a)^2 \(\ge\)0, luôn đúng
a^2+b^2+c^2 < 2(ab+bc+ca)
<=> a^2+b^2+c^2-2ab-2bc-2ca < 0
<=> (a^2+b^2-2ab) + (b^2+c^2-2bc) + (c^2+a^2-2ca) - a^2 - b^2 - c^2 < 0
<=> (a-b)^2 + (b-c)^2 + (c-a)^2 - a^2 - b^2 - c^2 < 0, luôn đúng
Ta co đpcm
a,b,c > 0
Áp dụng bđt AM-GM : a2+b2 \(\ge\) 2ab , b2+c2 \(\ge\) 2bc , c2+a2 \(\ge\) 2ca
Cộng theo vế : 2(a2+b2+c2) \(\ge\) 2(ab+bc+ac) => a2+b2+c2 \(\ge\) ab+bc+ca
theo bđt tam giác : a+b > c =>c(a+b) > c2 =>ac+bc > c2
b+c>a => ab+ac > a2,a+c > b=>ab+bc > b2
Cộng theo vế : 2(ab+bc+ac) > a2+b2+c2