K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2019

ồ toán lớp 9 à

để mik làm cái

24 tháng 2 2019

câu a thì dễ rồi, ai đó xem câu b đi ?

10 tháng 3 2020

Ở dưới mình gửi hình nhưng không được, mình trình bày. Hình khó nhìn 1 chút

Gọi M,N là giao của 2 đường tròn \(\left(O_1\right),\left(O_2\right)\)có đường kình làn lượt là AB,CD

Tam giác FAD đồng dạng với tam giác FCB (gg)

\(\Rightarrow\frac{FA}{FC}=\frac{FD}{FB}\Rightarrow FA.FB=FC\cdot FD\)

FN cắt đường tròn \(\left(O_1\right);\left(O_2\right)\)lần lượt tại \(M_1;M_2\left(M_1;M_2\ne N\right)\) 

Cm tương tự có:

\(\hept{\begin{cases}FA\cdot FB=FM_1\cdot FN\\FC\cdot FB=FM_2\cdot FN\end{cases}}\)

Do \(FM_1=FM_2\)nên \(M_1=M_2\)

Vậy M1;M2 trùng nhau => F,M,N thẳng hàng (1)

Tam giác KC'B đồng dạng với tam giác KMB' 

\(\Rightarrow\frac{KC'}{KB'}=\frac{KB}{KC}\Rightarrow KC'\cdot KC=KB'\cdot KB\)

Tam giác KBN1 đồng dạng với tam giác KMB' 

\(\Rightarrow\frac{KB}{KM}=\frac{KN_1}{KB'}\Rightarrow KN_1\cdot KM=KB\cdot KB'\)

Tương tự \(KN_2\cdot KM=KB\cdot KB'\)

Ta có KN1=KN2 => N1 và N2 trùng nhau

Vậy N; N1;N2 trùng nhau => K thuộc MN

Do vậy: H;K;M;N thẳng hàng (2)

Từ (1)(2) => K;F;M;N thẳng hàng

Vậy F;H;K thẳng hàng

9 tháng 3 2020

Đây nhé!

18 tháng 9 2018

A B C D O E F K M

a) Ta thấy: Điểm K nằm trên đường tròn ngoại tiếp \(\Delta\)BDE nên tứ giác DKBE nội tiếp đường tròn

=> ^BEK = ^BDK (2 góc nội tiếp cùng chắn cung BK) hay ^AEK = ^FDK

Mà tứ giác DKFC nội tiếp đường tròn => ^FDK = ^FCK 

Nên ^AEK = ^FCK hay ^AEK = ^ACK => Tứ giác AKCE nội tiếp đường tròn

=> ^KAE = ^KCD (Cùng bù ^KCE) hay ^KAB = ^KCD

Do tứ giác BKDE nội tiếp đường tròn nên ^KDE = ^KBA hay ^KBA = ^KDC

Xét \(\Delta\)DKC và \(\Delta\)BKA có: ^KAB = ^KCD; ^KBA = ^KDC => \(\Delta\)DKC ~ \(\Delta\)BKA (g.g)

=> \(\frac{KC}{KA}=\frac{KD}{KB}\Rightarrow\frac{KC}{KD}=\frac{KA}{KB}\).

Đồng thời ^DKC = ^BKA => ^DKC + ^BKC = ^BKA + ^BKC => ^BKD = ^AKC

Xét \(\Delta\)KBD và \(\Delta\)KAC có: ^BKD = ^AKC; \(\frac{KC}{KD}=\frac{KA}{KB}\)=> \(\Delta\)KBD ~ \(\Delta\)KAC (c.g.c)

=> ^KBD = ^KAC hoặc ^KBF = ^KAF => Tứ giác AKFB nội tiếp đường tròn

=> ^BKF = ^BAF (2 góc nội tiếp chắn cung BF) => ^BKF = ^BAC = ^BDC (Do ^BAC và ^BDC cùng chắn cung BC) (1)

Ta có: ^BDC = ^FDC = ^FKC (Cùng chắn cung FC)  (2)

Xét \(\Delta\)BMC: ^BMC + ^MBC + ^MCB = 1800. Mà ^MBC = ^BAC; ^MCB = ^BDC (Góc tạo bởi tiếp tuyến và dây cung)

Nên ^BAC + ^BDC + ^BMC = 1800    (3)

Thế (1); (2) vào (3) ta được: ^BKF + ^FKC + ^BMC = 1800 => ^BKC + ^BMC = 1800

=> Tứ giác BKCM nội tiếp đường tròn (đpcm).

b) Ta có: ^BKF = ^BDC (cmt) => ^BKF = ^BDE = ^BKE (Do tứ giác DKBE nội tiếp đường tròn)

Mà 2 điểm F và E nằm cùng phía so với BK => 3 điểm K;F;E thẳng hàng. Hay F nằm trên KE (*)

Mặt khác: ^BKF = ^CKF (Vì ^BKF = ^BAC; ^CKF = ^BDC; ^BAC = ^BDC)

=> ^BKE = ^CKE (Do K;F;E thẳng hàng) => ^KE là phân giác của ^BKC (4)

Xét tứ giác BKCM nội tiếp đường tròn: ^MBC = ^MKC; ^MCB = ^MKB 

Lại có: \(\Delta\)BCM cân ở M do MB=MC (T/c 2 tiếp tuyến giao nhau) => ^MBC=^MCB

Từ đó: ^MKC = ^MKB => KM là phân giác của ^BKC (5)

Từ (4) và (5) suy ra: 3 điểm K;M;E thẳng hàng. Hoặc M nằm trên KE (**)

Từ (*) và (**) => 3 điểm E;M;F thẳng hàng (đpcm).

Sửa đề: Hai đường chéo BD và AC cắt nhau tại E

góc ACD=1/2*sđ cung AD=90 độ

góc EFD+góc ECD=180 độ

=>EFDC nội tiếp

7 tháng 2 2020

a, xét (O) có gBAD nội tiếp đường tròn 

=>gBAD=90độ=> EA vuông góc FD

gBCD nội tiếp đường tròn 

=>gBCD=90độ => FC vuông góc DE

xét tgDEF có EA là đường cao

                     FC là đương cao

                    EA cắt FC tại B

=> B là trực tâm của tg

=>DB là đường cao

=> DB vuông góc EF

b,xét tgABF và tgCBE có gBAF=gBCE = 90độ

                                        gABF=gCBE (hai góc đối đỉnh)

=> tgABF ~ tgCBE (g.g)

=> BA/BC= BF/BE

=>BA.BE=BC.BF

c, bn xem lại giùm mk điểm H là điểm nào

4 tháng 5 2023

Cho em xin đáp án câu c bài này ah