Cho đa thức bậc hai (với là các hằng số).
Chọn số thích hợp trong các ô trống sau:
1) Nếu thì là một nghiệm của .
2) Nếu thì là một nghiệm của .
3) Nếu thì là một nghiệm của .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk chỉ cần thay x bằng 1 vào đó rồi tính đc P bằng 0 thì suy ra x bằng 1 là nghiệm của đa thức P là xog
a) Thay x = 1 vào đa thức F(x) ta được: F(1) = a.12 + b.1 + c F(1) = a + b + c F(1) = 0. Ta có F(x) = 0 tại x = 1 nên x = 1 là một nghiệm của F(x)
a) Thay x = 1 vào đa thức F(x), ta có:
F(1) = a.12 + b.1 + c = a+ b + c
Mà a + b + c = 0
Do đó, F(1) = 0. Như vậy x = 1 là một nghiệm của F(x)
b) Ta có: Đa thức 2x2 – 5x + 3 có a = 2 ; b = -5; c = 3 nên a + b + c = 2 + (-5) + 3 = 0
Do đó, đa thức có 1 nghiệm là x = 1
Giả sử P( x ) có ít nhất 3 nghiệm phân biệt : x1 ; x2 ; x3
\( \implies\) P( x1 ) = 0 \(\iff\) ax12 + bx1 + c = 0 ( 1 )
P( x2 ) = 0 \(\iff\) ax22 + bx2 + c = 0 ( 2 )
P( x3 ) = 0 \(\iff\) ax32 + bx3 + c = 0 ( 3 )
+)Lấy ( 1 ) - ( 2 ) vế với vế ta được : ( ax12 + bx1 + c ) - ( ax22 + bx2 + c ) = 0
\( \implies\) ax12 + bx1 - ax22 - bx2 = 0
\( \implies\) ( ax12 - ax22 ) + ( bx1 - bx2 ) = 0
\( \implies\) a( x12 - x22 ) + b( x1 - x2 ) = 0
\( \implies\) a( x1 - x2 )( x1 + x2 ) + b(x1 - x2 ) = 0
\( \implies\) ( x1 - x2 ) [ a( x1 + x2 ) + b ] = 0
Mà x1 - x2 khác 0 \( \implies\) a( x1 + x2 ) + b = 0 ( 4 )
+)Lấy ( 1 ) - ( 3 ) vế với vế ta được : ( ax12 + bx1 + c ) - ( ax32 + bx3 + c ) = 0
\( \implies\) ax12 + bx1 - ax32 - bx3 = 0
\( \implies\) ( ax12 - ax32 ) + ( bx1 - bx3 ) = 0
\( \implies\) a( x12 - x32 ) + b( x1 - x3 ) = 0
\( \implies\) a( x1 - x3 )( x1 + x3 ) + b(x1 - x3 ) = 0
\( \implies\) ( x1 - x3 ) [ a( x1 + x3 ) + b ] = 0
Mà x1 - x3 khác 0 \( \implies\) a( x1 + x3 ) + b = 0 ( 5 )
+)Lấy ( 4 ) - ( 5 ) vế với vế ta được : [ a( x1 + x2 ) + b ] - [ a( x1 + x3 ) + b ] = 0
\( \implies\) a( x1 + x2 ) + b - a( x1 + x3 ) - b = 0
\( \implies\) a( x1 + x2 ) - a( x1 + x3 ) = 0
\( \implies\) a( x1 + x2 - x1 - x3 ) = 0
\( \implies\) a ( x2 - x3 ) = 0
Mà x2 - x3 khác 0 \( \implies\) a = 0 ( vô lý )
Vậy P( x ) luôn không có quá 2 nghiệm phân biệt
Ta có :
f(1) = a . (-1)2 + b . ( -1 ) + c = a - b + c = 0
Vậy đa thức trên có nghiệm là -1
\(P\left(1\right)=a+b+c=0\)
\(P\left(-1\right)=a\cdot\left(-1\right)^2+b\left(-1\right)+c=6\)
\(\Leftrightarrow P\left(-1\right)=a-b+c=6\)
\(P\left(-2\right)=a\cdot\left(-2\right)^2+b\left(-2\right)+c=3\)
\(\Leftrightarrow P\left(-2\right)=4a-2b+c=3\)
\(\text{Khi đó : }\)
\(a=-2\)
\(b=-3\)
\(c=5\)
\(P\left(x\right)=-2x^2-3x+5\)
\(\left\{{}\begin{matrix}p\left(0\right)=0a+0b+c=3\\p\left(-1\right)=a+b+c=14\\p\left(3\right)=9a-3b+c=30\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}c=3\\a+b=11\\3a-b=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}c=3\\a=5\\b=6\end{matrix}\right.\)
3x2 + 8x + 2 = 0
Có a = 3; b' = 4; c = 2
⇒ Δ’ = 42 – 2.3 = 10 > 0
⇒ Phương trình có hai nghiệm phân biệt:
\(P\left(x\right)=ax^2+bx+c\)
1) Nếu \(c=0\) thì \(x=0\) là một nghiệm của \(P\left(x\right)\).
2) Nếu \(a+b+c=0\) thì \(x=1\) là một nghiệm của \(P\left(x\right)\).
3) Nếu \(a-b+c=0\) thì \(x=-1\) là một nghiệm của đa thức \(P\left(x\right)\).