K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2021

\(P\left(x\right)=ax^2+bx+c\)

1) Nếu \(c=0\) thì \(x=0\) là một nghiệm của \(P\left(x\right)\).

2) Nếu \(a+b+c=0\) thì \(x=1\) là một nghiệm của \(P\left(x\right)\).

3) Nếu \(a-b+c=0\) thì \(x=-1\) là một nghiệm của đa thức \(P\left(x\right)\).

30 tháng 4 2023

mk chỉ cần thay x bằng 1 vào đó rồi tính đc P bằng 0 thì suy ra x bằng 1 là nghiệm của đa thức P là xog

1 tháng 5 2023

a) Thay x = 1 vào đa thức F(x) ta được: F(1) = a.12 + b.1 + c F(1) = a + b + c F(1) = 0. Ta có F(x) = 0 tại x = 1 nên x = 1 là một nghiệm của F(x)

 

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) Thay x = 1 vào đa thức F(x), ta có:

F(1) = a.12 + b.1 + c = a+ b + c

Mà a + b + c = 0

Do đó, F(1) = 0. Như vậy x = 1 là một nghiệm của F(x)

b) Ta có: Đa thức 2x2 – 5x + 3 có a = 2 ; b = -5; c = 3 nên a + b + c = 2 + (-5) + 3 = 0

Do đó, đa thức có 1 nghiệm là x = 1

P(1)=a+b+c=0

=>x=1 là nghiệm của P(x)

17 tháng 3 2020

Giả sử P( x ) có ít nhất 3 nghiệm phân biệt : x1 ; x2 ; x3

 \( \implies\) P( x1 ) = 0 \(\iff\) ax12 + bx1 + c = 0 ( 1 )

          P( x2 ) = 0 \(\iff\) ax2+ bx2 + c = 0 ( 2 )

          P( x3 ) = 0 \(\iff\) ax3+ bx3 + c = 0 ( 3 )

+)Lấy ( 1 ) - ( 2 ) vế với vế ta được : ( ax12 + bx1 + c ) - ( ax2+ bx2 + c ) = 0

                                                \( \implies\)  ax12 + bx- ax2- bx2  = 0

                                                \( \implies\) ( ax12 - ax22 ) + ( bx1 - bx2 ) = 0

                                                \( \implies\) a( x12 - x22 ) + b( x1 - x2 ) = 0

                                                \( \implies\) a( x1 - x2 )( x1 + x2 ) + b(x1 - x2 ) = 0

                                                \( \implies\) ( x1 - x2 ) [ a( x1 + x2 ) + b ] = 0

 Mà x1 - x2 khác 0   \( \implies\)   a( x1 + x2 ) + b = 0 ( 4 )

+)Lấy ( 1 ) - ( 3 )  vế với vế ta được : ( ax12 + bx1 + c ) - ( ax3+ bx3 + c ) = 0   

                                                \( \implies\) ax12 + bx- ax3- bx3  = 0

                                                \( \implies\) ( ax12 - ax32 ) + ( bx1 - bx3 ) = 0

                                                \( \implies\) a( x12 - x32 ) + b( x1 - x3 ) = 0

                                                \( \implies\) a( x1 - x3 )( x1 + x3 ) + b(x1 - x3 ) = 0

                                                \( \implies\) ( x1 - x3 ) [ a( x1 + x3 ) + b ] = 0

 Mà x1 - x3 khác 0   \( \implies\)   a( x1 + x3 ) + b = 0 ( 5 )            

+)Lấy ( 4 ) - ( 5 )  vế với vế ta được : [ a( x1 + x2 ) + b ] - [ a( x1 + x3 ) + b ] = 0 

                                                \( \implies\) a( x1 + x2 ) + b a( x1 + x3 ) - b  = 0

                                                \( \implies\) a( x1 + x2 ) a( x1 + x3 ) = 0

                                                \( \implies\) a( x1 + x2 -  x1 - x) = 0 

                                                \( \implies\) a ( x2 - x3 ) = 0

  Mà x2 - x3 khác 0   \( \implies\)   = 0 ( vô lý )

  Vậy P( x ) luôn không có quá 2 nghiệm phân biệt                      

19 tháng 4 2018

Ta có :

f(1) = a . (-1)2 + b . ( -1 ) + c = a - b + c = 0

Vậy đa thức trên có nghiệm là -1

26 tháng 8 2017

Đáp án C

20 tháng 4 2021

\(P\left(1\right)=a+b+c=0\)

\(P\left(-1\right)=a\cdot\left(-1\right)^2+b\left(-1\right)+c=6\)

\(\Leftrightarrow P\left(-1\right)=a-b+c=6\)

\(P\left(-2\right)=a\cdot\left(-2\right)^2+b\left(-2\right)+c=3\)

\(\Leftrightarrow P\left(-2\right)=4a-2b+c=3\)

\(\text{Khi đó : }\)

\(a=-2\)

\(b=-3\)

\(c=5\)

\(P\left(x\right)=-2x^2-3x+5\)

14 tháng 5 2017

\(\left\{{}\begin{matrix}p\left(0\right)=0a+0b+c=3\\p\left(-1\right)=a+b+c=14\\p\left(3\right)=9a-3b+c=30\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}c=3\\a+b=11\\3a-b=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}c=3\\a=5\\b=6\end{matrix}\right.\)

29 tháng 11 2018

3x2 + 8x + 2 = 0

Có a = 3; b' = 4; c = 2

⇒ Δ’ = 42 – 2.3 = 10 > 0

⇒ Phương trình có hai nghiệm phân biệt:

Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9