Cho \(a;b;c\) là các số tự nhiên thỏa mãn \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\). Chứng minh rằng:
\(\frac{2019b-2020a}{2019c-2020b}>1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó
A = 200*
Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0
NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.
Như vậy, đề sai.
Ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\Rightarrow\left\{{}\begin{matrix}a=3k\\b=5k\\c=7k\end{matrix}\right.\)
\(\Rightarrow\frac{2019b-2020a}{2019c-2020b}=\frac{2019.5k-2020.3k}{2019.7k-2020.5k}=\frac{4035k}{4033k}=\frac{4035}{4033}>\frac{4033}{4033}=1\)
Vậy \(\frac{2019b-2020a}{2019c-2020b}>1\left(đpcm\right)\)
Cảm ơn bạn nhiều lắm ! Bạn giỏi thật ! Mình cảm ơn