1.Cho x\(\ge\)1 tìm Min P \(=3x+\frac{1}{2x}\)
2.Cho a\(\ge\)10;b\(\ge\)100;c\(\ge\)1000 tìm Min P \(=a+\frac{1}{a}+b+\frac{1}{b}+c+\frac{1}{c}\)
3. Cho a,b>0 CMR : \(\frac{a}{b}+\frac{b}{a}+\frac{8ab}{\left(a+b\right)^2}\ge4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức AM-GM ta có :
\(B=\frac{12}{x-1}+\frac{x-1+1}{3}=\frac{12}{x-1}+\frac{x-1}{3}+\frac{1}{3}\ge2\sqrt{\frac{12}{x-1}\cdot\frac{x-1}{3}}+\frac{1}{3}=4+\frac{1}{3}=\frac{13}{3}\)
Dấu "=" xảy ra <=> \(\frac{12}{x-1}=\frac{x-1}{3}\Rightarrow x=7\left(x\ge1\right)\). Vậy MinB = 13/3
a) giả sử \(x\ge y\ge3\)
P(x)=x+1/x
P(y)=y+1/y
P(x)-p(y)=(x+1/x)-(y+1/y)=(x-y)+(1/x-1/y)=A
\(x\ge y\ge3\Rightarrow\frac{1}{x}\le\frac{1}{y}\hept{\begin{cases}x-y\le0\\\frac{1}{x}-\frac{1}{y}\le0\end{cases}\Rightarrow A\le0}\)
Kết luận a cành lớn thì P(a) càng lớn
=> Pmin=P(3)=3+1/3=10/3
Ok ta cần chứng minh A>=0
\(A=\left(x-y\right)+\left(\frac{1}{x}-\frac{1}{y}\right)=\left(x-y\right)+\frac{\left(y-x\right)}{xy}=\left(x-y\right)-\frac{\left(x-y\right)}{xy}\\ \)
\(A=\left(x-y\right)\left[1-\frac{1}{xy}\right]\)
\(x\ge y\ge3\Rightarrow\hept{\begin{cases}x-y\ge0\\xy\ge9\\\frac{1}{xy}\le\frac{1}{9}< 1\Rightarrow1-\frac{1}{xy}>0\end{cases}}\Rightarrow A\ge0\)
Xét \(\dfrac{a}{a^2+1}+\dfrac{3\left(a-2\right)}{25}-\dfrac{2}{5}=\dfrac{a}{a^2+1}+\dfrac{3a-16}{25}=\dfrac{\left(3a-4\right)\left(a-2\right)^2}{25\left(a^2+1\right)}\ge0\)
\(\Rightarrow\dfrac{a}{a^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(a-2\right)}{25}\)
CMTT \(\Rightarrow\left\{{}\begin{matrix}\dfrac{b}{b^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(b-2\right)}{25}\\\dfrac{c}{c^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(c-2\right)}{25}\end{matrix}\right.\)
Cộng vế theo vế:
\(\Rightarrow VT\ge\dfrac{2}{5}+\dfrac{2}{5}+\dfrac{2}{5}-\dfrac{3\left(a-2\right)+3\left(b-2\right)+3\left(c-2\right)}{25}\ge\dfrac{6}{5}-\dfrac{3\left(a+b+c-6\right)}{25}=\dfrac{6}{5}\)
Dấu \("="\Leftrightarrow a=b=c=2\)
\(P=\dfrac{5x}{2}+\dfrac{x}{2}+\dfrac{1}{2x}\ge\dfrac{5x}{2}+2\sqrt{\dfrac{x}{2}.\dfrac{1}{2x}}\ge\dfrac{5.1}{2}+2.\dfrac{1}{2}=\dfrac{7}{2}\)
\(\Rightarrow P_{min}=\dfrac{7}{2}\) khi \(x=1\)
Ta có:
Vì \(\frac{2}{3}< x< \frac{13}{2}\Rightarrow\hept{\begin{cases}3x-2>0\\10-x>0\\13-2x>0\end{cases}}\)
Khi đó: \(\frac{1}{3x-2}-\frac{1}{x-10}+\frac{1}{13-2x}\)
\(=\frac{1}{3x-2}+\frac{1}{10-x}+\frac{1}{13-2x}\) \(\left(1\right)\)
Áp dụng BĐT Cauchy Schwarz ta được:
\(\left(1\right)\ge\frac{\left(1+1+1\right)^2}{3x-2+10-x+13-2x}\)
\(=\frac{3^2}{21}=\frac{3}{7}\)
Vậy với \(\frac{2}{3}< x< \frac{13}{2}\) thì \(\frac{1}{3x-2}-\frac{1}{x-10}+\frac{1}{13-2x}\ge\frac{3}{7}\)
Nguyễn Việt Lâm trời nhanh vậy anh zai :)))) nhưng mà tắt thế :)))
1.
\(P=\frac{x}{2}+\frac{1}{2x}+\frac{5x}{2}\ge2\sqrt{\frac{x}{4x}}+\frac{5}{2}.1=\frac{7}{2}\)
Dấu "=" xảy ra khi \(x=1\)
2.
\(P=\frac{a}{100}+\frac{1}{a}+\frac{b}{10000}+\frac{1}{b}+\frac{c}{1000^2}+\frac{1}{c}+\frac{99}{100}a+\frac{9999}{10000}b+\frac{999999}{1000000}c\)
\(P\ge2\sqrt{\frac{a}{100a}}+2\sqrt{\frac{b}{10000b}}+2\sqrt{\frac{c}{1000000c}}+\frac{99}{100}.10+\frac{9999}{10000}.100+\frac{999999}{1000000}.1000=...\)
Bạn tự bấm máy tính
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=10\\b=100\\c=1000\end{matrix}\right.\)
3.
\(VT=\frac{a^2+b^2}{ab}+\frac{8ab}{\left(a+b\right)^2}\ge\frac{\left(a+b\right)^2}{2ab}+\frac{8ab}{\left(a+b\right)^2}\ge2\sqrt{\frac{8ab\left(a+b\right)^2}{2ab\left(a+b\right)^2}}=4\)
Dấu "=" xảy ra khi \(a=b\)