Cho \(a;b;c>0\)và \(ab+bc+ca\le3abc\)
Tìm GTNN của \(P=\frac{a^3+b^3+c^3}{a+b+c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó
A = 200*
Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0
NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.
Như vậy, đề sai.
Áp dụng bất đẳng thức bu nhi a, ta có
\(\left(a^3+b^3+c^3\right)\left(a+b+c\right)\ge\left(a^2+b^2+c^2\right)^2\ge\frac{1}{9}\left(a+b+c\right)^4\)
=>\(\frac{a^3+b^3+c^3}{a+b+c}\ge\frac{1}{9}\left(a+b+c\right)^2\)
theo giả thiết,m ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\)
mà \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\Rightarrow3\ge\frac{9}{a+b+c}\Rightarrow a+b+c\ge3\)
=>\(\frac{a^3+b^3+c^3}{a+b+c}\ge1\)
dấu bẳng xảy ra <=>a=b=c=1
nhok cho chị mượn chõ chút
Bạn tự vẽ hình nhé!
Kẻ LH vuông góc với AB tại H
dễ dàng có \(\Delta KHL=\Delta MAK\left(ch-gn\right)\)
=>AK=HL
đặt AB=a,AK=x =>AK=HL=BH=x => HK=\(a-2x\)
ta có \(S_{ABC}=\frac{a^2}{2}\) ;\(S_{KML}=\frac{KL^2}{2}=\frac{HK^2+BH^2}{2}=\frac{\left(a-2x\right)^2+x^2}{2}\)
đến đây là tìm min của pt bậc 2 là sẽ ra