Tính a+b / c+d biết b/a=2;c/d=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu a > 2 thì a là số nguyên tố lẻ => a + b hoặc a + c là số chẵn (vì b và c là các số nguyên tố khác nhau => b hoặc c phải lẻ, tổng hai số lẻ a + b hoặc a + c là số chẵn) => c hoặc d là số chẵn => vô lý vì c và d cũng là số nguyên tố.
Vậy a = 2.
=> 22 . 10 + b2 = d2
=> d2 - b2 = 40
=> (d - b)(d + b) = 40 (1)
Ta lại có: (vì a = 2)
2 + b = c
2 + c = d
=> d = 2 + c = 2 + (2 + b) = 4 + b
Thay vào (1) ta có: 4. (4 +2b) = 40
=> b = 3
=> d = 4 + b = 7
=> c = a + b = 2 + 3 =5
vậy: a = 2; b= 3; c = 5; d = 7
A = ( a + b ) - ( d - b ) - ( c + d )
A = a + b - d + b - c - d
Thay a = -2 , b = 3 vào biểu thức trên ta được :
- 2 + 3 - d + 3 - c - d
= - 2 + ( 3 + 3 ) - ( d - d ) - c = - 2 + 6 - 0 - c = 4 - c
Tính S=a+b+c+d+e biết
a) c:b=3/2;a/d=1/4;2b=a+c;c-a=26;2a+d=e
b) c:a=7/2;b/d=3/8;d=a+2b;d-a=54;4b+d=2e
1, \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}=\dfrac{1}{3}\)
Do đó \(\left\{{}\begin{matrix}3a=b+c+d\left(1\right)\\3b=a+c+d\left(2\right)\\3c=a+b+d\left(3\right)\\3d=a+b+c\left(4\right)\end{matrix}\right.\)
Từ (1) và (2) \(\Rightarrow3\left(a+b\right)=a+b+2c+2d\Leftrightarrow2\left(a+b\right)=2\left(c+d\right)\Leftrightarrow a+b=c+d\Leftrightarrow\dfrac{a+b}{c+d}=1\)
Tương tự cũng có: \(\dfrac{b+c}{a+d}=1;\dfrac{c+d}{a+b}=1;\dfrac{d+a}{b+c}=1\)
\(\Rightarrow A=4\)
2, Có \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)\(\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)
Do đó \(\dfrac{x^2}{4}=\dfrac{1}{4};\dfrac{y^2}{16}=\dfrac{1}{4};\dfrac{z^2}{36}=\dfrac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=1\\y^2=4\\z^2=9\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm2\\z=\pm3\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(1;2;3\right),\left(-1;-2;-3\right)\)
Bài 2 :
a, Ta có : \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)
\(\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=1\\y^2=4\\z^2=9\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm2\\z=\pm3\end{matrix}\right.\)
Vậy ...
b, Ta có : \(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+3y-1}{5+7}=\dfrac{2x+3y-1}{6x}\)
\(\Rightarrow6x=12\)
\(\Rightarrow x=2\)
\(\Rightarrow y=3\)
Vậy ...
Từ a và b bạn tích ra các số còn lai rồi nhân lại bằng máy tính là được mà bạn^^
Đáp án A
Phương pháp:
Nhân cả tử và mẫu với cosx, sau đó sử dụng phương pháp tích phân từng phần.
Cách giải:
=>a = 4, b = 3, c = 1, d = 1 => a + b + c + d = 9