Bài 1 : Rút gọn biểu thức
a) (7x + a) 2 - (7x + 4)(7x - 4) ;
b)(x +2y)3 -6xy(x + 2y);
c) (3x + y) (9x2 - 3xy + y2 ) - ( 3y - y)3 - 27x2y
Bài 2 : Tính nhanh giá trị biểu thức
a) C = 392 + 78.61 + 612
b) D = 502 - 49.51
GIÚP MIK NHA!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 12:
a) \(\left(\dfrac{1}{2}x+4\right)^2\)
\(=\left(\dfrac{1}{2}x\right)^2+2\cdot\dfrac{1}{2}x\cdot4+4^2\)
\(=\dfrac{1}{4}x^2+4x+16\)
b) \(\left(7x-5y\right)^2\)
\(=\left(7x\right)^2-2\cdot7x\cdot5y+\left(5y\right)^2\)
\(=49x^2-70xy+25y^2\)
c) \(\left(6x^2+y^2\right)\left(y^2-6x^2\right)\)
\(=\left(y^2+6x^2\right)\left(y^2-6x^2\right)\)
\(=y^4-36x^4\)
d) \(\left(x+2y\right)^2\)
\(=x^2+2\cdot x\cdot2y+\left(2y\right)^2\)
\(=x^2+4xy+4y^2\)
e) \(\left(x-3y\right)\left(x+3y\right)\)
\(=x^2-\left(3y\right)^2\)
\(=x^2-9y^2\)
f) \(\left(5-x\right)^2\)
\(=5^2-2\cdot5\cdot x+x^2\)
\(=25-10x+x^2\)
a: =12x^4-6x^3+3x+4x^3-2x^2+1
=12x^4-2x^3-2x^2+3x+1
b: =14x^4+28x^2+6x^2+12x
=14x^4+34x^2+12x
`@` `\text {Ans}`
`\downarrow`
\((3x + 1)(4x³ - 2x² + 1)\)
`= 3x(4x^3-2x^2+1) + 4x^3 - 2x^2 + 1`
`= 12x^4 - 6x^3 + 3x + 4x^3 - 2x^2 + 1`
`= 12x^4 + (-6x^3 + 4x^3) - 2x^2 + 3x + 1`
`= 12x^4 - 2x^3 - 2x^2 + 3x + 1`
\((7x² + 3x)(2x + 4)\)
`= 7x^2(2x+4) + 3x(2x+4)`
`= 14x^3 + 28x^2 + 6x^2 + 12x`
`= 14x^3 + (28x^2 + 6x^2)+12x`
`= 14x^3 + 34x^2 + 12x`
`@` `\text {Kaizuu lv uuu}`
\(=7x^2+28x-14x^3+7x^2-28x-6x^2+3x-12\)
\(=-14x^3+8x^2+3x-12\)
\(7x\left(x+4\right)-\left(7x+3\right)\left(2x^2-x+4\right)\)
\(=7x^2+28x-14x^3+7x^2-28x-6x^2+3x-12\)
\(=14x^3+8x^2+3x-12\)
a,
\(\left(x^2-2xy+y^2\right)\left(x-y\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=\left[\left(x^2-2xy+y^2\right)\left(x-y\right)\right]-\left[\left(x-y\right)\left(x^2+xy+y^2\right)\right]\)
\(=\left[\left(x-y\right)^2\left(x-y\right)\right]-\left(x-y\right)^3\)
\(=\left(x-y\right)^3-\left(x-y\right)^3\)
\(=0\)
Bài 1 :
a) \(M=\dfrac{1}{2}x^2y.\left(-4\right)y\)
\(\Rightarrow M=-2x^2y^2\)
Khi \(x=\sqrt[]{2};y=\sqrt[]{3}\)
\(\Rightarrow M=-2.\left(\sqrt[]{2}\right)^2.\left(\sqrt[]{3}\right)^2\)
\(\Rightarrow M=-2.2.3=-12\)
b) \(N=xy.\sqrt[]{5x^2}\)
\(\Rightarrow N=xy.\left|x\right|\sqrt[]{5}\)
\(\Rightarrow\left[{}\begin{matrix}N=xy.x\sqrt[]{5}\left(x\ge0\right)\\N=xy.\left(-x\right)\sqrt[]{5}\left(x< 0\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}N=x^2y\sqrt[]{5}\left(x\ge0\right)\\N=-x^2y\sqrt[]{5}\left(x< 0\right)\end{matrix}\right.\)
Khi \(x=-2< 0;y=\sqrt[]{5}\)
\(\Rightarrow N=-x^2y\sqrt[]{5}=-\left(-2\right)^2.\sqrt[]{5}.\sqrt[]{5}=-4.5=-20\)
2:
Tổng của 4 đơn thức là;
\(A=11x^2y^3+\dfrac{10}{7}x^2y^3-\dfrac{3}{7}x^2y^3-12x^2y^3=0\)
=>Khi x=-6 và y=15 thì A=0
Với \(x\ne1\)ta có
\(P=\left(\frac{4}{x-1}-\frac{7x+5}{x^3-1}\right):\left(1-\frac{x-4}{x^2+x+1}\right)\)
\(=\left[\frac{4x^2+4x+4-7x-5}{\left(x-1\right)\left(x^2+x+1\right)}\right]:\left(\frac{x^2+x+1-x-4}{x^2+x+1}\right)\)
\(=\frac{4x^2-3x-1}{\left(x-1\right)\left(x^2+x+1\right)}:\frac{x^2-3}{x^2+x+1}=\frac{4x+1}{x^2-3}\)
1
a) 2x + 3 (đã rút gọn)
b) 5(6 - x^4) = 30 - 5x^4
c) 12(4x + 4)12 = 48x + 48
d) 7x . 8x - 9x - 9 = 56x^2 - 9x - 9
e) 8 - x^3 (đã rút gọn)
f) 6x + 8x . 1 = 6x + 8x = 14x
g) 9 . 10x - 8 + 7 = 90x - 8 + 7 = 90x - 1
h) 7x + 9 + 8x - 1 = 15x + 8
2
a) 2^10 : 8^2 = (2^10) / (8^2) = (2^10) / (2^6) = 2^(10-6) = 2^4 = 16
b) 125 : 5^2 = 125 / (5^2) = 125 / 25 = 5
c) 64^2 : 2^3 . 8^7 = (64^2) / (2^3 . 8^7) = (2^6)^2 / (2^3 . (2^3)^7) = 2^12 / (2^3 . 2^21) = 2^(12 - 3 - 21) = 2^(-12)
d) 3^4 : 9 = 81 / 9 = 9
e) 8^2 . 4^2 = (8^2) . (4^2) = 64 . 16 = 1024 f) 5^2 . 10^2 : 5^2 = (5^2) . (10^2) / (5^2) = 100 / 1 = 100
3
A) Để tìm ƯC(12; 136) có thể chuyển sang lũy thừa, ta phân tích 12 và 136 thành các thừa số nguyên tố: 12 = 2^2 * 3 136 = 2^3 * 17 ƯC(12; 136) = 2^2 = 4
B) Để tìm ƯC(25; 300) với điều kiện ƯC chia hết cho 3 và 9, ta phân tích 25 và 300 thành các thừa số nguyên tố: 25 = 5^2 300 = 2^2 * 3 * 5^2 ƯC(25; 300) = 5^2 = 25 (vì 25 chia hết cho 3 và 9)
C) Để tìm BC(17; 221) với điều kiện là số lẻ và là hợp số, ta phân tích 17 và 221 thành các thừa số nguyên tố: 17 = 17^1 221 = 13 * 17 BC(17; 221) = 17 (vì 17 là số lẻ và là hợp số)
D) Để tìm BC(10; 15) với điều kiện ƯC < 150 và là số nguyên tố, ta phân tích 10 và 15 thành các thừa số nguyên tố: 10 = 2 * 5 15 = 3 * 5 BC(10; 15) = 5 (vì 5 là số nguyên tố và ƯC < 150)
4
a) Để tính S, ta có thể nhận thấy rằng các số mũ của 4 tăng dần từ 2 đến 99. Vậy ta có thể viết lại S như sau: S = 1 * 4^2 * 4^3 * 4^4 * ... * 4^98 * 4^99 = 4^(2 + 3 + 4 + ... + 98 + 99) = 4^(2 + 3 + 4 + ... + 99 + 100 - 1) = 4^(1 + 2 + 3 + ... + 100 - 1) = 4^(100 * 101 / 2 - 1) = 4^(5050 - 1) = 4^5049
b) Để chứng minh rằng S chia hết cho 1024, ta cần chứng minh rằng S chia hết cho 2^10 = 1024. Ta có: S = 4^5049 = (2^2)^5049 = 2^(2 * 5049) = 2^10098 Ta thấy rằng 10098 chia hết cho 10 (vì 10098 = 1009 * 10), nên ta có thể viết lại S như sau: S = 2^(2 * 5049) = 2^(2 * 1009 * 10) = (2^10)^1009 = 1024^1009 Vậy S chia hết cho 1024.
5
a) Để xác định thời điểm người đi ô tô bắt kịp bác An, ta cần tính thời gian mà cả hai đã đi. Thời gian mà bác An đã đi: t1 = quãng đường / vận tốc = 60 km / 40 km/h = 1.5 giờ Thời gian mà người đi ô tô đã đi: t2 = quãng đường / vận tốc = 60 km / 80 km/h = 0.75 giờ Vì người đi ô tô đã xuất phát sau bác An, nên thời gian mà người đi ô tô bắt kịp bác An sẽ là thời gian mà cả hai đã đi cộng thêm thời gian nghỉ của bác An: t = t1 + t2 + 15 phút = 1.5 giờ + 0.75 giờ + 15 phút = 2.25 giờ + 0.25 giờ = 2.5 giờ Vậy, người đi ô tô sẽ bắt kịp bác An sau 2.5 giờ.
b) Để tính quãng đường từ A đến B, ta chỉ cần tính tổng quãng đường mà cả hai đã đi: quãng đường từ A đến B = quãng đường của bác An + quãng đường của người đi ô tô = 60 km + 60 km = 120 km Vậy, quãng đường từ A đến B là 120 km.
\(D=50^2-49.51\)
\(\Leftrightarrow D=50^2-\left(50-1\right)\left(50+1\right)\)
\(\Leftrightarrow D=50^2-50^2+1=1\)
\(C=39^2+78.61+61^2\)
\(\Leftrightarrow C=39^2+2.39.61+61^2\)
\(\Leftrightarrow C=\left(39+61\right)^2=100^2=10000\)