BÀI 1: Cho \(ac=b^2;bd=c^2\)
CMR: \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
BÀI 2: Cho \(\frac{2a+b+c}{a}=\frac{a+2b+c}{b}=\frac{a+b+2c}{c}\)
Tính N= \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
GIÚP MÌNH VS!!!! ĐANG CẦN GẤP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
\(\text{Δ}=1^2-4\cdot2\cdot\left(-4m-2\right)\)
=1+8(4m-2)
=32m-16+1=32m-15
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>32m-15>0
hay m>15/32
Để phương trình vô nghiệm thì 32m-15<0
hay m<15/32
Để phương trình có nghiệm kép thì 32m-15=0
hay m=15/32
\(A=\frac{a}{ab+a+2}+\frac{b}{bc+b+1}+\frac{2c}{ac+2c+2}\)
\(=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{abc^2}{ac+abc^2+abc}\)
\(=\frac{a}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{abc^2}{ac\left(bc+b+1\right)}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)
\(=\frac{bc+b+1}{bc+b+1}=1\)
\(\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)
\(=\dfrac{a}{ab+a+2}+\dfrac{ab}{abc+ab+a}+\dfrac{2c}{ac+2c+abc}\)
\(=\dfrac{a}{ab+a+2}+\dfrac{ab}{2+ab+a}+\dfrac{2}{a+2+ab}\)
\(=\dfrac{ab+a+2}{ab+a+2}=1\)
Bài 5:
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
b) Xét ΔDBI vuông tại I và ΔDCI vuông tại I có
DI chung
BI=CI(I là trung điểm của BC)
Do đó: ΔDBI=ΔDCI(hai cạnh góc vuông)
Suy ra: \(\widehat{DBI}=\widehat{DCI}\)(hai góc tương ứng)
c) Xét ΔECB có
CD là đường trung tuyến ứng với cạnh EB
\(CD=\dfrac{EB}{2}\)
Do đó: ΔECB vuông tại C(Định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)
Bài 4:
a) Ta có: \(AM=\dfrac{1}{2}BC\)(gt)
mà \(BM=CM=\dfrac{1}{2}BC\)(gt)
nên AM=BM=CM
Xét ΔABM có MA=MB(cmt)
nên ΔABM cân tại M
Suy ra: \(\widehat{AMB}=180^0-2\widehat{MAB}\)
\(\Leftrightarrow180^0-\widehat{CMA}=180^0-2\widehat{MAB}\)
hay \(\widehat{CMA}=2\cdot\widehat{MAB}\)
Xét ΔACM có MA=MC(cmt)
nên ΔACM cân tại M
Suy ra: \(\widehat{AMC}=180^0-2\cdot\widehat{MAC}\)
\(\Leftrightarrow180^0-\widehat{BMA}=180^0-2\cdot\widehat{MAC}\)
hay \(\widehat{BMA}=2\cdot\widehat{MAC}\)
b) Ta có: \(\widehat{BAC}=\widehat{MAB}+\widehat{MAC}\)
\(=\dfrac{1}{2}\left(\widehat{AMB}+\widehat{AMC}\right)\)
\(=\dfrac{1}{2}\cdot180^0=90^0\)
ddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd
dddddddddddddddddddddddddddđ
qqqqqqqqqqqqqwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
xxxxxxx
BÀI 2: Áp dụng tc của dãy tỉ số bằng nhau, ta có:
\(\frac{2a+b+c}{a}=\frac{a+2b+c}{b}=\frac{a+b+2c}{c}=\frac{4a+4b+4c}{a+b+c}=4\)
\(\Rightarrow2+\frac{b+c}{a}=2+\frac{a+c}{b}=2+\frac{a+b}{c}=4\)
\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=2\)
Vậy N = 6
BÀI 1: Theo đề bài, ta có:
\(ac+c^2=b^2+bd\Rightarrow c\left(a+c\right)=b\left(b+d\right)\Rightarrow c\left(a+c\right)+bc=b\left(b+d\right)+bc\)\(\Rightarrow c\left(a+b+c\right)=b\left(b+c+d\right)\)\(\Rightarrow\frac{a+b+c}{b+c+d}=\frac{b}{c}\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\left(\frac{b}{c}\right)^3=\frac{b^2b}{c^2c}=\frac{acb}{bdc}=\frac{a}{d}\).