K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2015

Làm 2 lần, giờ làm lần thứ 3 =.=

Ta có: \(\left(a-b\right)+\left(a+b\right)=2a\) là một số chẵn

=> \(\left(a-b\right);\text{ }\left(a+b\right)\)cùng chẵn hoặc cùng lẻ (do tổng của chúng là một số chẵn)

Mà tích của chúng = 2010 là một số chẵn nên 2 số cùng chẵn

\(\Rightarrow\left(a-b\right)\left(a+b\right)\) chia hết cho 4.

Mà 2010 không chia hết cho 4

=> Không tìm được các cặp số nguyên a, b thỏa mãn đề bài.

31 tháng 3 2015

a - b = 3 ; a / b = 1,6 ; b / a = 0,625

31 tháng 3 2015

a-b=8-5=3

\(\frac{a}{b}=\frac{8}{5}\)

\(\frac{b}{a}=\frac{5}{8}\)

2 tháng 4 2022

A

2 tháng 4 2022

A

2 tháng 4 2022
2 tháng 4 2022

??

 

13 tháng 4 2017

Very easy, mình giúp 1 câu, các câu còn lại bạn tự làm đi

a,\(\frac{27a-37}{4-5a}=2\Rightarrow27a-37=8-10a\Rightarrow37a=45\Rightarrow a=\frac{45}{37}\)

9 tháng 10 2017

Lời giải:

\(A=2004+\sqrt{2003-x}\)

a)Để \(A\) có nghĩa thì \(2003-x\ge0\Leftrightarrow x\le2003\)

b) Ta có:

\(A=2004+\sqrt{2003-x}=2005\)

Tương đương với:

\(\sqrt{2003-x}=1\)

Suy ra :\(\left|2003-x\right|=1\Rightarrow\left[{}\begin{matrix}2003-x=1\\2003-x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2002\\x=2004\end{matrix}\right.\)

c) Ta có:

Để \(A\) nhỏ nhất thì \(\sqrt{2003-x}\) cũng phải nhỏ nhất

\(\sqrt{2003-x}\ge0\Leftrightarrow2004+\sqrt{2003-x}\ge2004\)

Dấu "=" xảy ra khi: \(x=2003\)