K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2021

\(P\left(-1\right)=\left(-1\right)^4+2.\left(-1\right)^2+1=4\\ P\left(1\right)=1^4+2.1^2+1=4\)

\(P\left(-1\right)=\left(-1\right)^4+2\cdot\left(-1\right)^2+1=4\)

\(P\left(1\right)=P\left(-1\right)=4\)

\(Q\left(2\right)=2^4+4\cdot2^3+2\cdot2^2-4\cdot2+1=49\)

\(Q\left(1\right)=1^4+4\cdot1^3+2\cdot1^2-4\cdot1+1=4\)

a: Ta có: \(x^4-2x^3+2x-1\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)-2x\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\cdot\left(x^2-2x+1\right)\)

\(=\left(x-1\right)^3\cdot\left(x+1\right)\)

b: Ta có: \(-a^4+a^3+2a^3+2a^2\)

\(=-a^2\left(a^2-a-2a-2\right)\)

c: Ta có: \(x^4+x^3+2x^2+x+1\)

\(=x^4+x^3+x^2+x^2+x+1\)

\(=\left(x^2+x+1\right)\left(x^2+1\right)\)

23 tháng 4 2017

KQ la -4x3+4x

23 tháng 4 2017

bn có thể giải từng bước cho mik hỉu dk ko.......

26 tháng 7 2018

a) Kết quả M = x 4 – 1.

b) Kết quả M =  x 2  – 2x – 3.

16 tháng 6 2023

`A+B=x^4 +5x^3 -x^2 -x+1+x^4 +2x^3 -2x^2 -3x+2`

`=2x^4 +7x^3 -3x^2 -4x+3`

 

`A-B=x^4+5x^3-x^2-x+1-(x^4 +2x^3-2x^2-3x+2)`

`=x^4+5x^3-x^2-x+1-x^4-2x^3+2x^2+3x-2`

`=3x^3+x^2+2x-1`

NV
9 tháng 4 2021

\(A\left(x\right)+B\left(x\right)-C\left(x\right)\)

\(=\left(-7+2x^2+x^4+3x^5-x^3\right)+\left(-x+x^4+2x^3-7\right)-\left(2x-x^4-3x^3\right)\)

\(=3x^5+3x^4+4x^3+2x^2-3x-14\)

27 tháng 10 2023

a, Sửa đề:

\(3x^2-\sqrt3 x+\dfrac14(dkxd:x\geq0)\\=(x\sqrt3)^2-2\cdot x\sqrt3\cdot\dfrac12+\Bigg(\dfrac12\Bigg)^2\\=\Bigg(x\sqrt3-\dfrac12\Bigg)^2\)

b, 

\(x^2-x-y^2+y\\=(x^2-y^2)-(x-y)\\=(x-y)(x+y)-(x-y)\\=(x-y)(x+y-1)\)

c,

\(x^4+x^3+2x^2+x+1\\=(x^4+x^3+x^2)+(x^2+x+1)\\=x^2(x^2+x+1)+(x^2+x+1)\\=(x^2+x+1)(x^2+1)\)

d,

\(x^3+2x^2+x-16xy^2\\=x(x^2+2x+1-16y^2)\\=x[(x+1)^2-(4y)^2]\\=x(x+1-4y)(x+1+4y)\\Toru\)

17 tháng 9 2021

\(a,=\left[x^2\left(x^2-x-1\right)+x^3+x^2-3x-1\right]:\left(x^2-x-1\right)\\ =\left[x^2\left(x^2-x-1\right)+x\left(x^2-x-1\right)+2x^2-2x-1\right]\\ =\left[x^2\left(x^2-x-1\right)+x\left(x^2-x-1\right)+2\left(x^2-x-1\right)+1\right]:\left(x^2-x-1\right)\\ =\left[\left(x^2+x+2\right)\left(x^2-x-1\right)+1\right]:\left(x^2-x-1\right)=x^2+x+2R1\)