K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2021

\(c,\) Vì AD//BP và AD=BP nên ADPB là hbh

Do đó O là trung điểm AP và BD

Xét tam giác ADP có DO và AN là trung tuyến giao tại G nên G là trọng tâm

Do đó \(DG=\dfrac{2}{3}DO\)

Mà \(DO=\dfrac{1}{2}BD\Rightarrow DG=\dfrac{2}{3}\cdot\dfrac{1}{2}BD=\dfrac{1}{3}BD\)

26 tháng 12 2021

a: Xét ΔABC có

AM/AB=AN/AC

Do đó: MN//BC

hay BMNC là hình thang

mà BN=CM

nên BMNC là hình thang cân

12 tháng 4 2020

a) Xét \(\Delta\)ABC ta có : 

M là trung điểm AB 

N là trung điểm AC 

=> MN là đường trung bình 

=> MN//BC , MN = 1/2 BC (1)

=> MNCB là hình thang 

b) Xét tam giác ABC ta có : 

N , P là trung điểm AC , BC (2)

=> NP là đường trung bình 

Từ (1) và (2) => MNPB là hình bình hành

15 tháng 4 2020

a) Xét \(\Delta\)ABC có: M; N là trung điểm của AB; AC 

=> MN là đường trung bình của \(\Delta\)ABC  (1)

=> MN//BC 

=> BCNM là hình thang 

b) (1) => MN //= \(\frac{1}{2}\) BC  mà BP = \(\frac{1}{2}\)BP  va B; P; C thẳng hàng  ( vì P là trung điểm BC ) 

=> MN// = BP => MNPB là hình bình hành 

c) MN // BC => MN // HP => MNHP là hình thang 

(b) => ^MNP = ^MBP => ^MNP = ^MBH (2) 

Lại có: ^NMH = ^MHB ( so le trong )  ( 3) 

Mặt khác: \(\Delta\)AHB vuông tại H có HM là trug tuyến đáy AB 

=> HM = \(\frac{1}{2}\)AB = BM 

=> \(\Delta\)MHB cân tại M => ^MBH = ^MHB  (4) 

Từ (2) ; (3) ; (4) => ^NMH = ^MNP 

=> MNPH là hình thang cân 

b) Điều kiện để HPNM là hình chữ nhật: 

Ta có: HPNM là hình thang cân

=> HPNM là hình chữ nhật  MH vuông góc BC 

Mặt khác ta có: AH vuông góc BC 

=> A; M; H thẳng hàng mà A; M; B thẳng hàng 

=> H trùng B 

=> Tam giác ABC vuong tại B.

15 tháng 4 2020

a) tam giác ABC có M ; N là trug điểm của AB ; AC

=) MN là trug bình của TG ABC (1)

=) MN/BC

=) BCNM là hình thag 

(mik chia ra nhé)

a) Xét ΔABC có 

M là trung điểm của AB(gt)

N là trung điểm của AC(gt)

Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra:MN//BC và \(MN=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)

hay \(BC=2\cdot MN=2\cdot8=16\left(cm\right)\)

b) Xét tứ giác BMNC có MN//BC(cmt)

nên BMNC là hình thang(Định nghĩa hình thang)

Hình thang BMNC có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

nên BMNC là hình thang cân

cho tam giác ABC cân tại A. Gọi M, N, H lần lượt là trung điểm của AB, AC, BC.

a) Chứng minh : Tứ giác MNCB là hình thang cân.

b) Gọi D là điểm đối xứng của H qua N. Các tứ giác AHCD, ADNM là hình gì? Vì sao?

c) Chứng minh : N là trọng tâm của tam giác CMD.

d) MD cắt AC tại E. Chứng minh : BN đi qua trung điểm của HE.