cho tam giác ABC, góc A=60 độ, phân giác BD, CE cắt nhau tại O.
CMR: a) tam giác DOE cân;
b)BE+CD = BC
GIÚP MK VS MK TÍCH NHA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy F \(\in\) BC sao cho OD là phân giác góc BOC
Dễ dàng tính được góc BOC=120o => góc BOF = góc COF = 60o
Góc BOC = góc EOD ( đối đỉnh ) => góc EOD = 120o => góc DOC = góc EOB = 60o
Từ đó có
Mà BF+CF=BC => BE + CD = BC
Nếu có gì chưa hiểu thì bạn nhắn lại cho minh , cho mình tick đúng nha
Lấy F ∈ BC sao cho OD là phân giác góc BOC
Dễ dàng tính được góc BOC=120
o => góc BOF = góc COF = 60
o
Góc BOC = góc EOD ( đối đỉnh ) => góc EOD = 120
o => góc DOC = góc EOB = 60
o
Từ đó có
Tam giác BEO = Tam giác BFO (g.c.g)
Tam giác CDO = Tam giác CFO (g.c.g)
=> OE = OF và OD = OF => OE = OD => Tam giác EOD cân tại O
=> BE = BF và CD = CF
Mà BF+CF=BC => BE + CD = BC
Lấy F thuộc BC sao cho OD là phân giác góc BOC
Dễ dàng tính được góc BOC=120 độ
=> góc BOF = góc COF = 60 do
Góc BOC = góc EOD ( đối đỉnh ) => góc EOD = 120 do
=> góc DOC = góc EOB = 60 do
Từ đó có
Tam giác BEO = Tam giác BFO (g.c.g)
Tam giác CDO = Tam giác CFO (g.c.g)
=> OE = OF và OD = OF => OE = OD => Tam giác EOD cân tại O
=> BE = BF và CD = CF
Mà BF+CF=BC => BE + CD = BC
A B C D E F O
a, Lấy \(F\) nằm trên đoạn thẳng \(BC\) sao cho \(OF\) là tia phân giác của \(\widehat{BOC}\)
Ta có: \(\widehat{BAC}=60^0\Rightarrow\widehat{ABC}+\widehat{ACB}=120^0\)
\(\Rightarrow\frac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)=60^0\)
\(\Rightarrow\widehat{OBC}+\widehat{OCB}=60^0\)
\(\Rightarrow\widehat{BOC}=120^0\)
\(\Rightarrow\widehat{BOF}=\widehat{FOC}=60^0\)
\(\Rightarrow\widehat{EOB}=\widehat{DOC}=60^0\)
\(\Rightarrow\Delta BEO=\Delta BFO\left(g-c-g\right)\)
\(\Rightarrow\left\{{}\begin{matrix}EO=OF\\BE=BF\end{matrix}\right.\)
Chứng minh tương tự: \(\Delta DOC=\Delta FOC\)
\(\Rightarrow\left\{{}\begin{matrix}OD=OF\\DC=FC\end{matrix}\right.\)
\(\Rightarrow OF=CD\)
\(\Rightarrow\Delta EOD\) cân tại \(O\)
b, \(BE+CD=BF+FC=BC\left(Đpcm\right)\)