Tìm tất cả các cặp số nguyên (a;b) thỏa mãn đẳng thức 9a2 -6a -b3 =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) => 2xy +3x=y+1
=> 2xy+3x-y=1
=> x(2y+3) - 1/2 (2y+3) +3/2 =1
=> (x-1/2)(2y+3)=1-3/2= -1/2
=> (2x-1)(2y+3)=-1
ta có bảng
...........
tớ chỉ làm phần 1 thôi
1. ta có (x+5)y-x=10
=>(x+5)y-x-5=10-5
=>(x+5)y-(x+5)=5
=>(x+5)(y-1)=5
lập bảng xét giá trị của x,y \(\in Z\)
Bạn tự làm tiếp nhé -_-
\(x^2+4x-y^2=1\)
\(\Leftrightarrow x^2+4x+4-y^2=5\)
\(\Leftrightarrow\left(x+2\right)^2-y^2=5\)
\(\Leftrightarrow\left(x+2-y\right)\left(x+2+y\right)=5\)
*Trường hợp 1:
\(\left\{{}\begin{matrix}x+2-y=5\\x+2+y=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
*Trường hợp 2: \(\left\{{}\begin{matrix}x+2-y=1\\x+2+y=5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
*Trường hợp 3: \(\left\{{}\begin{matrix}x+2-y=-1\\x+2+y=-5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-5\\y=-2\end{matrix}\right.\)
*Trường hợp 4: \(\left\{{}\begin{matrix}x+2-y=-5\\x+2+y=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-5\\y=2\end{matrix}\right.\)
Vậy:...........
Ai chs opoke đại chiên lh mik nha! Đỏi lấy nick olm hoặc cho mik
Bạn tham khảo:
3a−b+2ab−10
⇒2ab−b+3a=10
⇒b(2a−1)+3a=10
⇒2b(2a−1)+6a=10.2
⇒2b(2a−1)+6a−3=20−3
⇒2b(2a−1)+3(2a−1)=17
⇒(2a−1)(2b+3)=17
⇒2a−1∈Ư(17)=⇒2a−1∈Ư(17)= { ±1;±17±1;±17 }
.) Nếu 2a−1=12a−1=1 thì 2b+3=172b+3=17
⇒a=1;b=7
.) Nếu 2a−1=−12a−1=−1 thì 2b+3=−172b+3=−17
⇒a=0;b=−10
.) Nếu 2a−1=172a−1=17 thì 2b+3=12b+3=1
⇒a=9;b=−1
.) Nếu 2a−1=−172a−1=−17 thì 2b+3=−12b+3=−1
⇒a=−8;b=−2