Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho α + β = π. Tính:
a) A = sin2α + cos2β;
b) B = (sinα + cosβ)2 + (cosα + sinβ)2.
Ta có α + β = π nên sinα = sin(π – α) = sinβ, suy ra sin2α = sin2β.
a) A = sin2α + cos2β = sin2β + cos2β = 1.
b) Ta có α + β = π nên cosα = – cos(π – α) = – cosβ.
Khi đó, B = (sinα + cosβ)2 + (cosα + sinβ)2
= (sinβ + cosβ)2 + (– cosβ + sinβ)2
= (sinβ + cosβ)2 + (sinβ – cosβ )2
= sin2β + 2sinβ cosβ + cos2β + sin2β – 2sinβ cosβ + cos2β
= 2(sin2β + cos2β)
= 2 . 1 = 2.
Cho góc α thỏa mãn cos α = 3 5 và - π < α < 0 A = sin 2 α - cos 2 α . Tính giá trị biểu thức . A = sin 2 α - cos 2 α
A. - 26 25
B. - 13 25
C. 3 25
D. - 17 25
Đáp án đúng : D
Cho góc α thỏa mãn: π < α < 3 π 2 và A = sin 2 α + cos α + π 2
Trog hình 45, hệ thức nào trong các hệ thức sau không đúng ?
(A) sin2α + cos2α = 1
(B) sin α = cos β
(C) cos β = sin (90o – α)
D t g α = sin α cos α
Chọn C sai
- Vì đẳng thức đúng phải là: cos β = sin(90o - β)
Cho sin α = - 1 2 , π < α < 3 π 2 .Tính A = 4 s i n 2 α - 2 c o s α + 3 c o t α :
A. - 3 2
B. 1+ 4 3
C. - 3 + 2 2
D. 4 3 3
Cho góc α thỏa mãn: cos α = 3 5 v à - π < α < 0 .Tính giá trị biểu thức: A = sin 2 α - cos 2 α
Cho góc α thỏa mãn π < α < 3 π 2 và tan α = 2 : Tính giá trị của biểu thức A = sin 2 α + cos α + π 2
A. 4 + 2 5 10
B. 4 + 5 5 5
C. 4 + 2 5 5
D. 2 + 5 5
Đáp án đúng : C
Tìm đẳng thức đúng:
A. cos 2 α + sin 2 β = 1 B. sin 2 α + cos 2 β = 1
C. cos 2 α + sin 2 α = 1 D. cos 2 α + sin 2 β = 2
Chọn đáp án C
Cho sinα.cos(α+β) = sinβ với α+β ≠ π/2 + kπ,α ≠ π/2+lπ(k,l ϵ Z). Ta có:
A. tan(α+β)=2cotα
B. tan(α+β)=2cotβ
C. tan(α+β)=2tanβ
D.tan(α+β)=2tanα
Chọn đáp án B.
Cho sinα = 8/17, sinβ = 15/17 với 0 < α < π/2, 0 < β <π/2. Chứng minh rằng: α + β = π/2
Do đó: sin(α + β) = sinαcosβ + cosαsinβ
Ta có α + β = π nên sinα = sin(π – α) = sinβ, suy ra sin2α = sin2β.
a) A = sin2α + cos2β = sin2β + cos2β = 1.
b) Ta có α + β = π nên cosα = – cos(π – α) = – cosβ.
Khi đó, B = (sinα + cosβ)2 + (cosα + sinβ)2
= (sinβ + cosβ)2 + (– cosβ + sinβ)2
= (sinβ + cosβ)2 + (sinβ – cosβ )2
= sin2β + 2sinβ cosβ + cos2β + sin2β – 2sinβ cosβ + cos2β
= 2(sin2β + cos2β)
= 2 . 1 = 2.