1) Tìm các số a,b biết rằng a + b = 432 và UCLN (a;b) = 36.
2) Cho A= 2 + 22 + 23 + ... + 260.Chứng tỏ A chia hết cho 6 ; 7 ; 9.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Đặt a=36n;b=36n,ƯCLN(m;n)=1 với m,n thuộc Z
Ta có a+b=432 nên 36n+36m=432 => 36.(m+n)=432
m+n=432:36
m+n=12
=> ta xét từng số từ 1 ->11 .VD
m=1=>n=11=>ƯCLN =1(chọn)=>a=36,b=396
Nếu ƯCLN ko = 1 thì loại
\(A=3^1+3^2+3^3+...+3^{2010}\)
\(\Rightarrow3A=3^2+3^3+...+3^{2011}\)
\(\Rightarrow2A=3^{2011}-3\)
\(\Rightarrow A=\frac{3^{2011}-2}{2}\)
\(\Leftrightarrow2A+3=3^{2011}-3+3=2^{2011}\)
\(\Rightarrow x=2011\)
Câu 1 : \(\frac{a}{b}=\frac{42}{66}=\frac{7}{11}\Rightarrow a=7k;b=11k\) với \(k\in\) N*
ƯCLN(a ; b) = 36 => ƯCLN(7k ; 11k) = 36. Mà 7 và 11 nguyên tố cùng nhau nên k = 36
Vậy a = 36 x 7 = 252 ; b = 396.
Phân số phải tìm là \(\frac{252}{396}\)
Cau hoi tuong tu nhe Mai dep gai de thuog
CHTT nhé bạn
tick nha