Tính các tổng sau :
a) S1 = 1 + 2 + 3 + … + n ;
b) S2 = 12 + 22 + 32 + … + n2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a2S1 = a2 + a4 + a6 +...+a2n+2
=> a2S1 - S1 = (a2 + a4 + a6 +...+a2n+2)-(1+a2 + a4 + a6 +...+a2n)
S1(a2-1) = a2n+2-1
=> S1 = (a2n+2-1):(a2-1)
Câu 2 cũng nhân với a2 là được
S1=1+2+3+...+999
S1=(999+1).[(999-1):1+1]:2
S1=1000.999:2
S1=999000:2
S1=499500
S₁ = 1 - 2 + 3 - 4 + ... + 99 - 100
Số số hạng:
100 - 1 + 1 = 100 (số)
⇒ S₁ = (1 - 2) + (3 - 4) + ... + (99 - 100)
= -1 + (-1) + ... + (-1) (50 số -1)
= -50
a2S1 = a2 + a4 + a6 +...+a2n+2
=> a2S1 - S1 = (a2 + a4 + a6 +...+a2n+2)-(1+a2 + a4 + a6 +...+a2n)
S1(a2-1) = a2n+2-1
=> S1 = (a2n+2-1):(a2-1)
#include <bits/stdc++.h>
using namespace std;
long long n,t,x;
int main()
{
cin>>n;
t=0;
while (n>0)
{
x=n%10;
t=t+x;
n=n/10;
}
if (t%3==0) cout<<"Co";
else cout<<"Khong";
return 0;
}
A=1+2+4+8+16+...+8192
Đặt A.2=2+4+8+16+...+16384
Cùng thêm 1 và bớt đi 1 ta có
A.2=1+2+4+8+16+...+8192+16384-1
A.2=A+16384-1
A=16384-1
A=16383
k mk nhé mk mất công làm rồi
1. số bé nhất có 2 chữ số là : 10
số lớn nhất có 2 chữ số là : 99
số các số hạng có 2 chữ số là : (99-10):1+1=90(số)
tổng các số tự nhiên có 2 chữ số là;
(99+10)x90:2=4905
tk cho mk đợi xíu mk làm bài 2
a) \(S_1=1+2+...+n\)
\(=\frac{n\left(n-1\right)}{2}\)
b) \(S_2=1^2+2^2+...+n^2\)
Ta co :
\(2^3=\left(1+1\right)^3=1^3+3.1^2+3.1+1\)
\(3^3=\left(2+1\right)^3=2^3+3.2^2+3.2+1\)
..................................................................................
\(\left(n+1\right)^3=n^3+3n^2+3n+1\)
Cộng từng vế n hằng đẳng thức trên ta được :
\(\Rightarrow\left(n+1\right)^3=1^3+3.\left(1^2+2^2+...+n^2\right)+3.\left(1+2+...+n\right)+n\)
\(\Leftrightarrow\left(n+1\right)^3=1^3+3.S_2+3.S_1+n\)
\(\Leftrightarrow3S_2=\left(n+1\right)^3-3S_1-\left(n+1\right)\)
\(\Leftrightarrow3S_2=\left(n+1\right)^3-\frac{3n\left(n+1\right)}{2}-\left(n+1\right)\)
\(\Leftrightarrow3S_2=\left(n+1\right)\left[\left(n+1\right)^2-\frac{3n}{2}-1\right]\)
\(\Leftrightarrow3S_2=\left(n+1\right)\left(n^2+2n+1-\frac{3n}{2}-1\right)\)
\(\Leftrightarrow3S_2=\left(n+1\right)\left(n^2+\frac{n}{2}\right)\)
\(\Leftrightarrow3S_2=\left(n+1\right)n\left(n+\frac{1}{2}\right)\)
\(\Leftrightarrow3S_2=\frac{1}{2}n\left(n+1\right)+n\left(n+1\right)\)
\(\Leftrightarrow3S_2=\frac{1}{2}n\left(n+1\right)+\left(n^2+1\right)\)
\(\Leftrightarrow3S_2=\frac{1}{2}n\left(n+1\right)\left(2n+1\text{}\right)\)
\(\Leftrightarrow S_2=\frac{1}{6}n\left(n+1\right)\left(2n+1\text{}\right)\)
Bỏ 3 dòng từ 2 dòng cuối trở lên nhé
Tức là ko bỏ 2 dòng cuối mà bỏ 3 dòng trên 2 dòng cuối hộ