Cho 100 số a1 ; a2 ; a3 ;...;an . Mỗi số trong chúng có giá trị = 1 hoặc -1 .
Chứng minh rằng n chia hết cho 4 . Biết a1a2+a2a3+...+an-1an+ana1 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử trong 100 số nguyên dương đã cho không tồn tại 2 số nào bằng nhau
Không mất tính tổng quát, giả sử \(a_1< a_2< a_3< ...< a_{100}\)
\(\Rightarrow a_1\ge1;a_2\ge2;a_3\ge3;....;a_{100}\ge100\Rightarrow\frac{1}{a_1^2}+\frac{1}{a_2^2}+\frac{1}{a^2_3}...+\frac{1}{a^2_{100}}\le\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\left(1\right)\)
Lại có: \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=\frac{199}{100}\left(2\right)\)
Từ (1) và (2) => \(\frac{1}{a_1^2}+\frac{1}{a^2_2}+...+\frac{1}{a^2_{100}}< \frac{199}{100}\) trái với giả thiết
Vậy tồn tại ít nhất 2 số bằng nhau trong 100 số a1,a2,...,a100
Em tham khảo link này nhé! Câu hỏi của Ngọc - Toán lớp 7 - Học toán với OnlineMath
Câu hỏi của Ngọc Ánh - Toán lớp 10 | Học trực tuyến
Bạn tham khảo link tại đây nhé
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\frac{a_1-1}{100}=\frac{a_2-2}{99}=...=\frac{a_{100}-100}{1}=\frac{a_1+a_2+...+a_{100}-5050}{5050}=\frac{10100-5050}{5050}=\frac{5050}{5050}=1\)
\(\Rightarrow a_1-1=100\)
\(a_2-2=99\)
...
\(a_{100}-100=1\)
\(\Rightarrow a_1=a_2=...=a_{100}=101\)
Vì a1,a2,a3,...,an nhận các giá trị 1 hoặc -1
=> a1a2;a2a3;a3a4;...;ana1 cũng nhận các giá trij1 hoặc -1
mà a1a2+a2a3+...+ana1=0
Nên n số hạng của tổng có m giá trị bằng 1 và có m giá trị bằng -1
=> n=m+m=2m (m thuộc N*) (1)
Mặt khác: a1a2a3a4...ana1 = (a1a2a3...an)^2 >0
Nên số thừa số nguyên âm là chẵn
=>m=2p (p thuộc N*) (2)
Từ (1) và (2) => n = 2.(2p) = 4p chia hết cho 4
Vậy n chia hết cho 4
Bài này có trong Nâng cao phát triển toán 7 phải ko nhỉ