Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2.
\(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮3\)
( 3 số nguyên liên tiếp chia hết cho 3)
\(P-\left(a_1+a_2+a_3+...+a_n\right)=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)\) chia hết cho 3
=> P chia hết cho 3
a: a^3-a=a(a^2-1)
=a(a-1)(a+1)
Vì a;a-1;a+1 là ba số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
=>a^3-a chia hết cho 6
Với A1 = 12. Ta sẽ chứng minh An =1 + 3 + ... + (2n-1) = n2 (đáp án d)
Giả sử An đúng với n = k tức Ak = 1 + 3 + ... + (2k - 1) = k2. Ta sẽ chứng minh nó cũng đúng với Ak+1
Thật vậy: Ak+1 = 1 + 3 + ... + (2k-1) + (2k+1) = Ak + 2k + 1 = k2 + 2k + 1 = (k+1)2
Vậy...
chon dai di thoi
a1=1
a2=3
=>d3=2
d1=a1-a3 de sai roi a1<a3 khong co d1
Vì a1,a2,a3,...,an nhận các giá trị 1 hoặc -1
=> a1a2;a2a3;a3a4;...;ana1 cũng nhận các giá trij1 hoặc -1
mà a1a2+a2a3+...+ana1=0
Nên n số hạng của tổng có m giá trị bằng 1 và có m giá trị bằng -1
=> n=m+m=2m (m thuộc N*) (1)
Mặt khác: a1a2a3a4...ana1 = (a1a2a3...an)^2 >0
Nên số thừa số nguyên âm là chẵn
=>m=2p (p thuộc N*) (2)
Từ (1) và (2) => n = 2.(2p) = 4p chia hết cho 4
Vậy n chia hết cho 4
Bài này có trong Nâng cao phát triển toán 7 phải ko nhỉ