Tìm số có 4 số abcd tm 2đk sau
ab;ad là 2 số nguyên tố
db + c=b^2+d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ơ kìa sao nãy lỗi thì vào coment nhanh thế mà h chả có ai :)))
X=\(\overline{abcd}\) chia hết cho 25 và 79
=>X thuộc B(25;79)
=>X thuộc B(1975)
mà X là số tự nhiên nhỏ nhất có 4 chữ số
nên X=1975
\(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow14+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow2\left(ab+bc+ca\right)=-14\)
\(\Leftrightarrow ab+bc+ac=-7\)
\(\Leftrightarrow\left(ab+bc+ca\right)^2=49\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=49\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=49\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=49\)(vì a+b+c=0)
Ta có: \(\left(a^2+b^2+c^2\right)^2=196\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=196\)
\(\Leftrightarrow a^4+b^4+c^4+98=196\)
\(\Leftrightarrow a^4+b^4+c^4=98\)