B1: Cho a,b,c>0; a+b+c=3. CM: a5+b5+c5+1/a+1/b+1/c > hoặc = 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1: Áp dụng BĐT Cauchy-Schwarz ta có:
\(P=\frac{1}{x^3+y^3}+\frac{1}{xy}=\frac{1}{\left(x+y\right)\left(x^2+2xy+y^2-3xy\right)}+\frac{1}{xy}\)
\(=\frac{1}{\left(x+y\right)\left(\left(x+y\right)^2-3xy\right)}+\frac{3}{3xy}\)
\(=\frac{1}{1-3xy}+\frac{\sqrt{3^2}}{3xy}\ge\frac{\left(1+\sqrt{3}\right)^2}{1-3xy+3xy}=\left(1+\sqrt{3}\right)^2\)
chữ " b" mk ghi ở phần b) trước "CMR " là gõ nhầm đấy, ko liên quan j đến bài toán đâu !!
B2: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=4\)
\(\Rightarrow\orbr{\begin{cases}a+b+c=2\\a+b+c=-2\end{cases}}\)
TH1: \(a+b+c=2\Rightarrow c=2-\left(a+b\right)\)
\(a^2+b^2+c^2=2\)\(\Leftrightarrow a^2+b^2+\left(2-a-b\right)^2=2\)
\(\Leftrightarrow a^2+b^2+ab-2\left(a+b\right)+1=0\)
\(\Leftrightarrow a^2+\left(b-2\right)a+b^2-2b+1=0\)
Xem đây là một phương trình bậc hai ẩn a, tham số b.
Để tồn tại a thỏa phương trình trên thì \(\Delta\ge0\)
\(\Leftrightarrow\left(b-2\right)^2-4\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow b\left(3b-4\right)\le0\)\(\Leftrightarrow0\le b\le\frac{4}{3}\)
Do vai trò của a, b, c là như nhau nên \(0\le a,b,c\le\frac{4}{3}\)
(hoặc đổi biến thành b và tham số a --> CM được a, rồi thay \(b=2-c-a\) sẽ chứng minh được c)
TH2: \(a+b+c=-2\) --> tương tự trường hợp 1 nhưng kết quả sẽ là
\(-\frac{4}{3}\le a,b,c\le0\)
Kết hợp 2 trường hợp lại, ta có đpcm.
a) \(a+b\ge2\sqrt{a}\cdot\sqrt{b}\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
b) \(a+b+c\ge\sqrt{a}\cdot\sqrt{b}+\sqrt{a}\cdot\sqrt{c}+\sqrt{b}\cdot\sqrt{c}\)
\(\Leftrightarrow2a+2b+2c-2\sqrt{a}\cdot\sqrt{b}-2\sqrt{a}\cdot\sqrt{c}-2\sqrt{b}\cdot\sqrt{c}\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Điểm rơi: a=b=c=1
Xét \(a^5+\frac{1}{a}\ge2a^4\)(dấu bằng xảy ra khi và chỉ khi a=1) Trùng với điểm rơi cả Bđt nhá
Tương tự: \(b^5+\frac{1}{b}\ge2b^4\)và \(c^5+\frac{1}{c}\ge2c^4\)
Công lại: \(a^5+b^5+c^5+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(a^4+b^4+c^4\right)\)
Cm: bđt phụ sao: \(a^4+b^4+c^4\ge\frac{\left(a+b+c\right)^4}{27}\left(1\right)\)
Có: \(\hept{\begin{cases}a^4+b^4+c^4\ge\frac{\left(a^2+b^2+c^2\right)^2}{3}\\a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\end{cases}\Rightarrow\left(1\right)}\)
Vì thế: \(Bđt\ge2\left(a^4+b^4+c^4\right)\ge2\cdot\frac{\left(a+b+c\right)^4}{27}=2\cdot\frac{3^4}{3^3}=6\)
Theo bất đẳng thức cô-si
a,b,c>0
=> a5+1/a \(\ge\)2√(a5.1/a)= 2a2
Cmtt => b^5+1/b \(\ge\)2b2
1/c+c^5 \(\ge\)2c2
=> A\(\ge\)2( a2+b2+c2) \(\ge\)2.(a+b+c)2/3 ( do a2+b2+c2 \(\ge\)
(a+b+c)2/3 , cai nanày câu co thE tu cm)
A\(\ge\)2.32/3= 6(dpcm)