Giá Trị -la-bl biết
a:5=b:6 ; a.b=30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:a2+b2=13(1)
ab=6=>2ab=12(2)
Lấy (1)-(2), vế theo vế ta đc:
a2+b2-2ab=13-12
=>a2-2ab+b2=1
=>(a-b)2=1=>a-b=1=>a= b+1
Vậy |a+b|=|2b+1|
mk ko chắc nhé bn
\(a>0>b>c\)
\(a+b< 0\)vì khoảng cách từ \(a\)tới \(0\)nhỏ hơn khoảng cách từ \(b\)tới \(0\)nên \(\left|b\right|>\left|a\right|\).
\(a-b>0\)vì \(a>b\).
\(c-a< 0\)vì \(c< a\).
Do đó ta có:
\(\left|a+b\right|+\left|a-b\right|+\left|c-a\right|=-\left(a+b\right)+\left(a-b\right)-\left(c-a\right)=a-2b-c\)
CMR không thể tìm được các số a;b;c \(\in\)Z sao cho la-bl+lb-cl+lc-al=2019.
l l là giá trị tuyệt đối
\(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|=2019\)
Chứng minh phản chứng (kết hợp phương pháp dùng BĐT):
ĐK: a,b,c ∈ ℤ
Giả sử ta có thể tìm các số a,b,c sao cho\(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|\ge2019\) (1)
(1) \(\Leftrightarrow\left|a-b\right|+\left|b-c\right|+\left|c-a\right|-2019\ge0\) (2)
Mà \(\left|a-b\right|\ge0\) (3)
\(\left|b-c\right|\ge0\)(4)
\(\left|c-a\right|\ge0\) (5)
Từ (3),(4),(5) suy ra \(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|-2019\ge-2019\) trái với (2)
Từ đó suy ra (1) không thể xảy ra.Suy ra \(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|=2019\) vô nghiệm với mọi a,b,c thuộc Z.
~Tham khảo nha~
(*).Cách khác:
Ta có: \(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|=2019\)
Mà \(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|\ge\left|a-b+b-c+c-a\right|\) (
Nên \(\left|a-b+b-c+c-a\right|=2019\) (vô lý) (Do \(\left|a-b+b-c+c-a\right|=0\) với mọi a,b,c)
Suy ra đpcm
Ta có : 2/b=a/5-2/15=(3a-2)/15
=>b/2=15/(3a-2) (nghịch đảo hai vế)
=>b=30/(3a-2)
a=1 =>b=30
a=4 =>b=3