ìm các số nguyên dương thỏa mãn \(a\le b\le3\le c;c\ge b+1;a+b\ge c\)tìm min của
\(Q=\frac{2ab+a+b+c\left(ab-1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt bđt là (*)
Để (*) đúng với mọi số thực dương a,b,c thỏa mãn :
\(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)thì \(a=b=c=1\) cũng thỏa mãn (*)
\(\Rightarrow4\le\sqrt[n]{\left(n+2\right)^2}\)
Mặt khác: \(\sqrt[n]{\left(n+2\right)\left(n+2\right).1...1}\le\frac{2n+4+\left(n-2\right)}{n}=3+\frac{2}{n}\)
Hay \(n\le2\)
Với n=2 . Thay vào (*) : ta cần CM BĐT
\(\frac{1}{\left(2a+b+c\right)^2}+\frac{1}{\left(2b+c+a\right)^2}+\frac{1}{\left(2c+a+b\right)^2}\le\frac{3}{16}\)
Với mọi số thực dương a,b,c thỏa mãn: \(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Vì: \(\frac{1}{\left(2a+b+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)}\)
Tương tự ta có:
\(\frac{1}{\left(2b+a+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)};\frac{1}{\left(2c+a+b\right)^2}\le\frac{1}{4\left(a+c\right)\left(c+b\right)}\)
Ta cần CM:
\(\frac{a+b+c}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{3}{16}\Leftrightarrow16\left(a+b+c\right)\le6\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Ta có BĐT: \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)
Và: \(3\left(ab+cb+ac\right)\le3abc\left(a+b+c\right)\le\left(ab+cb+ca\right)^2\Rightarrow ab+bc+ca\ge3\)
=> đpcm
Dấu '=' xảy ra khi a=b=c
=> số nguyên dương lớn nhất : n=2( thỏa mãn)
\(\frac{8}{3}P=\frac{8}{3}ab\le\frac{1}{4}\left(\frac{8}{3}a+b\right)^2=\frac{1}{4}\left(a+b+\frac{5}{3}a\right)^2\le\frac{1}{4}\left(11+\frac{5}{3}.3\right)^2=\frac{1}{4}.16^2=64\)
\(\Rightarrow P\le\frac{64.3}{8}=24\)
dấu bằng xảy ra khi a=3;b=8
eo tí thì bị lừa =)))
0=<a=<3 mà để ab lớn nhất thì điểm rơi của a là 3
=>b=8. GTLN là 24
Khi a=3;b=8 :v
Gỉa thiết đã cho có thể viết lại thành
(a/2)2+(b/2)2+(c/2)2+2.a/2.b/2.c/2=1
Từ đó suy ra 0<a/2,b/2,c/2≤1.
Như vậy tồn tại A,B,Cthỏa A+B+C=πA+B+C=r và a/2=cosA,b/2=cosB,c/2=cosC.
Từ một BĐT cơ bản cosA+cosB+cosC≤3/2
ta có ngay a+b+c≤3
<=> a^2+b^2+c^2 =< 3^2 =< 9
ta có:\(0\le a\le3\Rightarrow a\left(a-3\right)\le0\)
\(\Rightarrow a^2-3a\le0\)
C/m tương tư ta đc: \(b^2-3b\le0\)
\(c^2-3c\le0\)
\(\Rightarrow a^2+b^2+c^2-3\left(a+b+c\right)\le0\)
\(\Leftrightarrow a^2+b^2+c^2\le3.4=12\) (vì a+b+c=4)