Bài 1 : Chứng tỏ rằng ;
a) A = 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 < 1/3
b) B = 1/5 + 1/9 + 1/10 + 1/41 + 1/42 < 1/2
Chú ý : dấu / là phân cách giữa tử số và mẫu số
Trả lời nhanh nha , ngày 21 / 7 là tôi phải nộp bài rồi đó , nhanh giùm cái nha !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(2^1+2^2+2^3+...+2^{60}.\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+....+2^{59}.\left(1+2\right)\)
\(=2.3+2^3.3+...+5^{59}.3\)
\(=3.\left(2+2^3+...+2^{59}\right)\)
\(\Rightarrow\left(2^1+2^2+....+2^{60}\right)⋮3\)
Bài 2 : Đề sai nhé ví dụ 1 và 2 : 1 x 2 = 2 không chia hết cho 6
Bài 2 : hs3 số tự nhiên liên tiếp chia hết cho 6
+ trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 2
+ gọi số thứ nhất là : 2a ; 2a + 1 ; 2a + 2
+ a là số chẵn => 2a + 1 chia hết cho 3
+ a là số lẻ => 2a + 2 chia hết chO 3
Vậy trong ba số tự nhiên liên tiếp luôn chia hết cho 2.3 = 6
bài 1 :
Ta có :
abab = 1000a + 100b + 10 a + b
= 1010a + 101b
= 101 ( 10a + b )
Vì 101 chia hết cho 101
=> 101 ( 10a + b ) chia hết cho 101
Vậy abab là bội của 101
bài 2
Ta có :
aaabbb = 111000a + 111b
= 37 ( 3000a + 3 b )
Vì 37 chia hết cho 37
=> 37 ( 3000a + 3b ) chia hết cho 37
Vậy 37 là ước của aaabbb
a: 6x^2-7x-3=0
=>6x^2-9x+2x-3=0
=>(2x-3)(3x+1)=0
=>x=-1/3 hoặc x=3/2
=>ĐPCM
b: 2x^2-5x-3=0
=>2x^2-6x+x-3=0
=>(x-3)(2x+1)=0
=>x=-1/2 hoặc x=3
=>ĐPCM
A= (21+22+23)+(24+25+26)+...+(258+259+260)
=20(21+22+23)+23(21+22+23)+...+257(21+22+23)
=(21+22+23)(20+23+...+257)
= 14(20+23+...+257) chia hết cho 7
Vậy A chia hết cho 7
gọi 1/41+1/42+1/43+...+1/80=S
ta có :
S>1/60+1/60+1/60+...+1/60
S>1/60 x 40
S>8/12>7/12
Vậy S>7/12
\(1,Y=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\\ Y=\left(1+3+3^2\right)\left(1+3^3+...+3^{96}\right)\\ Y=13\left(1+3^3+...+3^{96}\right)⋮13\\ 2,A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2018}+3^{2019}\right)\\ A=\left(1+3\right)\left(1+3^2+...+3^{2019}\right)\\ A=4\left(1+3^2+...+3^{2019}\right)⋮4\\ 3,\Leftrightarrow2\left(x+4\right)=60\Leftrightarrow x+4=30\Leftrightarrow x=36\)
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
TH1: Nếu a chia hết cho 3 => Đề bài đúng
TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)
=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng
TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)
=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng
TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)
Bài 5:
Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3
Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2
Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4
Nhưng: 2 không chia hết cho 4
Nên: 4(b+1)+2 không chia hết cho 4
Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4
Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)
Xét biểu thức \(P=10^0+10^1+10^2+...+10^{2021}\)
\(\Rightarrow10P=10^1+10^2+10^3+...+10^{2022}\)
\(\Rightarrow9P=10^{2022}-1\)
\(\Rightarrow10^{2022}+8=9P+9⋮9\)
Vậy ta có đpcm.
Cách 2: Ta thấy \(10=9+1\) nên
\(10^{2022}=\left(9+1\right)^{2022}\) \(=\left(9+1\right)\left(9+1\right)...\left(9+1\right)\) (2022 lần)
\(=9Q+1\) (Q là 1 biểu thức).
Vậy \(10^{2022}-1=9Q⋮9\), cũng suy ra đpcm.