K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2021

Gọi u1,du1,d lần lượt là số hạng đầu và công sai của cấp số cộng

Ta có: {u5=−15u20=60u5=-15u20=60.

Vậy S10=102.(2u1+9d)=−125

15 tháng 12 2021

\(\left\{{}\begin{matrix}u_5=-15\\u_{20}=60\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u_1+4d=-15\\u_1+19d=60\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u_1=-35\\d=5\end{matrix}\right.\)

\(\Rightarrow S_{20}=\dfrac{20.\left(u_1+u_{20}\right)}{2}\)

\(=10\left(2u_1+19d\right)\)

\(=10\left(-2.35+19.5\right)\)

\(=250\)

1: u2=4 và u4=10

=>u1+d=4 và u1+3d=10

=>2d=6 và u1+d=4

=>d=3 và u1=1

\(S_{10}=\dfrac{10\cdot\left(2\cdot1+9\cdot3\right)}{2}=5\cdot\left(2+27\right)=145\)

2: 

u3=6 và u5=16

=>u1+2d=6 và u1+4d=16

=>2d=10  và u1+2d=6

=>d=5 và u1=6-2*5=-4

\(S_{12}=\dfrac{12\cdot\left(2\cdot\left(-4\right)+11\cdot5\right)}{2}=6\cdot\left(-8+55\right)=6\cdot47=282\)

27 tháng 11 2023

Công sai của cấp số cộng đó là:

\(u_3-u_1=u_1+2d-u_1=2d=2\cdot3=6\)

NV
25 tháng 12 2022

\(\left\{{}\begin{matrix}u_2+u_3+u_5=17\\u_6-2u_1=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u_1+d+u_1+2d+u_1+4d=17\\u_1+5d-2u_1=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3u_1+7d=17\\-u_1+5d=9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u_1=1\\d=2\end{matrix}\right.\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a, Ta có:

\(\begin{array}{l}\left\{ \begin{array}{l}{u_2}\; + {\rm{ }}{u_5}\; = {\rm{ }}42\\{u_4}\; + {\rm{ }}{u_9}\; = {\rm{ }}66\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + d\; + {\rm{ }}{u_1} + 4d\; = {\rm{ }}42\\{u_1} + 3d\; + {\rm{ }}{u_1} + 8d\;\; = {\rm{ }}66\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}2{u_1} + 5d\;\; = {\rm{ }}42\\2{u_1} + 11d\;\;\; = {\rm{ }}66\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\; = {\rm{ }}\frac{{99}}{7}\\d\;\;\; = {\rm{ }}\frac{{24}}{7}\end{array} \right.\end{array}\)

b, Ta có: '

\(\begin{array}{l}\left\{ \begin{array}{l}\;{u_2}\; + {\rm{ }}{u_4}\; = {\rm{ }}22\\{u_1}.{u_5}\; = {\rm{ }}21\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + d\; + {\rm{ }}{u_1} + 3d\; = {\rm{ 2}}2\\{u_1}.\left( {{u_1} + 4d\;} \right)\; = {\rm{ 21}}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}2{u_1} + 4d\;\; = {\rm{ 2}}2\\{u_1}.\left( {{u_1} + 4d\;} \right)\; = {\rm{ 21}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\; = {\rm{ }}11 - 2d\\\left( {11 - 2d} \right).\left( {11 - 2d + 4d\;} \right)\; = {\rm{ 21}}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{u_1}\; = {\rm{ }}11 - 2d\\\left( {11 - 2d} \right).\left( {11 + 2d\;} \right)\; = {\rm{ 21}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\; = {\rm{ }}11 - 2d\\{11^2} - {\left( {2d\;} \right)^2} = {\rm{ 21}}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{u_1}\; = {\rm{ }}11 - 2d\\121 - 4{d^2} = {\rm{ 21}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\; = {\rm{ }}11 - 2d\\d\; =  \pm 5\end{array} \right.\end{array}\)

Với \(d =  - 5 \Rightarrow {u_1} = 11 - 2.\left( { - 5} \right) = 21\)

Với \(d = 5 \Rightarrow {u_1} = 11 - 2.5 = 1\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Ta có: \({u_2} = {u_1} + d\)

\({u_3} = {u_2} + d = {u_1} + 2d\)

\({u_4} = {u_3} + d = {u_1} + 3d\)

\({u_5} = {u_4} + d = {u_1} + 4d\)

b) Công thức tính số hạng tổng quát \({u_n}\):

\({u_n} = {u_1} + \left( {n - 1} \right)d\).

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

\(a,\left\{{}\begin{matrix}u_3-u_1=20\\u_2+u_5=54\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(u_1+2d\right)-u_1=20\\\left(u_1+d\right)+\left(u_1+4d\right)=54\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2d=20\\2u_1+5d=54\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}d=10\\u_1=2\end{matrix}\right.\)

Vậy cấp số cộng \(\left(u_n\right)\) có số hạng đầu \(u_1=2\) và công sai \(d=10\)

\(b,\left\{{}\begin{matrix}u_2+u_3=0\\u_2+u_5=80\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u_1+d+u_1+2d=0\\u_1+d+u_1+4d=80\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u_1=-60\\d=40\end{matrix}\right.\)

Vậy cấp số cộng \(\left(u_n\right)\) có số hạng đầu \(u_1=-60\) và công sai \(d=40\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

\(c,\left\{{}\begin{matrix}u_5-u_2=3\\u_8\cdot u_3=24\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u_1+4d-u_1-d=3\\\left(u_1+7d\right)\left(u_1+2d\right)=24\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}d=1\left(1\right)\\\left(u_1+7d\right)\left(u_1+2d\right)=24\left(2\right)\end{matrix}\right.\)

Thế (1) vào (2), ta được:

\(\left(u_1+7\cdot1\right)\left(u_1+2\cdot1\right)=24\\ \Leftrightarrow u_1^2+9u_1-10=0\\ \Leftrightarrow\left(u_1-1\right)\left(u_1+10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}u_1=1\\u_1=-10\end{matrix}\right.\)

Vậy có hai cấp số cộng \(\left(u_n\right)\) thỏa mãn:

- Cấp số cộng có số hạng đầu \(u_1=1\) và công sai \(d=1\)

- Cấp số cộng có số hạng đầu \(u_1=-10\) và công sai \(d=1\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

 

a)

\(\begin{array}{l}\left\{ \begin{array}{l}5{u_1} + 10{u_5} = 0\\{S_4} = 14\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5{u_1} + 10\left( {{u_1} + 4{\rm{d}}} \right) = 0\\\frac{{4\left( {2{u_1} + 3{\rm{d}}} \right)}}{2} = 14\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5{u_1} + 10{u_1} + 40{\rm{d}} = 0\\2\left( {2{u_1} + 3{\rm{d}}} \right) = 14\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}15{u_1} + 40{\rm{d}} = 0\\2{u_1} + 3{\rm{d}} = 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 8\\d =  - 3\end{array} \right.\end{array}\)

Vậy cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = 8\) và công sai \(d =  - 3\).

b)

\(\begin{array}{l}\left\{ \begin{array}{l}{u_7} + {u_{15}} = 60\\u_4^2 + u_{12}^2 = 1170\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {{u_1} + 6{\rm{d}}} \right) + \left( {{u_1} + 14{\rm{d}}} \right) = 60\\{\left( {{u_1} + 3{\rm{d}}} \right)^2} + {\left( {{u_1} + 11{\rm{d}}} \right)^2} = 1170\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 6{\rm{d}} + {u_1} + 14{\rm{d}} = 60\\{\left( {{u_1} + 3{\rm{d}}} \right)^2} + {\left( {{u_1} + 11{\rm{d}}} \right)^2} = 1170\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}2{u_1} + 20{\rm{d}} = 60\\{\left( {{u_1} + 3{\rm{d}}} \right)^2} + {\left( {{u_1} + 11{\rm{d}}} \right)^2} = 1170\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 10{\rm{d}} = 30\left( 1 \right)\\{\left( {{u_1} + 3{\rm{d}}} \right)^2} + {\left( {{u_1} + 11{\rm{d}}} \right)^2} = 1170\left( 2 \right)\end{array} \right.\end{array}\)

\(\left( 1 \right) \Leftrightarrow {u_1} = 30 - 10{\rm{d}}\) thế vào (2) ta được:

\(\begin{array}{l}{\left( {30 - 10{\rm{d}} + 3{\rm{d}}} \right)^2} + {\left( {30 - 10{\rm{d}} + 11{\rm{d}}} \right)^2} = 1170 \Leftrightarrow {\left( {30 - 7{\rm{d}}} \right)^2} + {\left( {30 + {\rm{d}}} \right)^2} = 1170\\ \Leftrightarrow 900 - 420{\rm{d}} + 49{{\rm{d}}^2} + 900 + 60{\rm{d}} + {d^2} = 1170 \Leftrightarrow 50{{\rm{d}}^2} - 360{\rm{d}} + 630 = 0\\ \Leftrightarrow 5{{\rm{d}}^2} - 36{\rm{d}} + 63 = 0 \Leftrightarrow \left[ \begin{array}{l}d = 3\\d = \frac{{21}}{5}\end{array} \right.\end{array}\)

Với \(d = 3 \Leftrightarrow {u_1} = 30 - 10.3 = 0\).

Với \(d = \frac{{21}}{5} \Leftrightarrow {u_1} = 30 - 10.\frac{{21}}{5} =  - 12\).

Vậy có hai cấp số cộng \(\left( {{u_n}} \right)\) thoả mãn:

‒ Cấp số cộng có số hạng đầu \({u_1} = 0\) và công sai \(d = 3\).

‒ Cấp số cộng có số hạng đầu \({u_1} =  - 12\) và công sai \(d = \frac{{21}}{5}\).

17 tháng 9 2023

1) \(\left(u_n\right):\left\{{}\begin{matrix}u_1=-7\\q=2\end{matrix}\right.\)

\(u_5=-7.q^4=-7.16=-112\)

\(u_m=u_1.q^{m-1}\)

\(\Leftrightarrow-7.2^{m-1}=-3584\)

\(\Leftrightarrow2^{m-1}=512=2^9\)

\(\Leftrightarrow m-1=9\)

\(\Leftrightarrow m=10\)

Vậy số \(-3584\) là số thứ \(10\) của cấp số nhân

17 tháng 9 2023

\(\left(u_n\right):\left\{{}\begin{matrix}u_1=-3\\q=-2\end{matrix}\right.\)

\(u_{10}=-u_1.q^9=-3.\left(-2\right)^9=1536\)

\(u_m=u_1.q^{m-1}\)

\(\Leftrightarrow-3.\left(-2\right)^{m-1}=-3072\)

\(\Leftrightarrow\left(-2\right)^{m-1}=1024=\left(-2\right)^{10}\)

\(\Leftrightarrow m-1=10\)

\(\Leftrightarrow m=11\)

Vậy số \(-3072\) là số thứ \(11\) của cấp số nhân.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a)

\(\left\{ \begin{array}{l}{u_5} - {u_1} = 15\\{u_4} - {u_2} = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^4} - {u_1} = 15\\{u_1}.{q^3} - {u_1}.q = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.\left( {{q^4} - 1} \right) = 15\\{u_1}.\left( {{q^3} - q} \right) = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.\left( {{q^2} - 1} \right)\left( {{q^2} + 1} \right) = 15\left( 1 \right)\\{u_1}.q\left( {{q^2} - 1} \right) = 6\left( 2 \right)\end{array} \right.\)

Do \(q =  \pm 1\) không là nghiệm của hệ phương trình nên chia vế với vế của (2) cho (1) ta được:

\(\frac{q}{{{q^2} + 1}} = \frac{6}{{15}} \Leftrightarrow 15q = 6\left( {{q^2} + 1} \right) \Leftrightarrow 15q = 6{q^2} + 6 \Leftrightarrow 6{q^2} - 15q + 6 = 0 \Leftrightarrow \left[ \begin{array}{l}q = \frac{1}{2}\\q = 2\end{array} \right.\)

Với \(q = \frac{1}{2}\) thế vào (2) ta được: \({u_1}.\frac{1}{2}\left( {{{\left( {\frac{1}{2}} \right)}^2} - 1} \right) = 6 \Leftrightarrow {u_1} =  - 16\).

Với \(q = 2\) thế vào (2) ta được: \({u_1}.2\left( {{2^2} - 1} \right) = 6 \Leftrightarrow {u_1} = 1\).

Vậy có hai cấp số nhân \(\left( {{u_n}} \right)\) thoả mãn:

‒ Cấp số nhân có số hạng đầu \({u_1} = 1\) và công bội \(q = 2\).

‒ Cấp số nhân có số hạng đầu \({u_1} =  - 16\) và công bội \(q = \frac{1}{2}\).

b)

\(\left\{ \begin{array}{l}{u_1} - {u_3} + {u_5} = 65\\{u_1} + {u_7} = 325\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} - {u_1}.{q^2} + {u_1}.{q^4} = 65\\{u_1} + {u_1}.{q^6} = 325\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\left( {1 - {q^2} + {q^4}} \right) = 65\left( 1 \right)\\{u_1}\left( {1 + {q^6}} \right) = 325\left( 2 \right)\end{array} \right.\)

Chia vế với vế của (1) cho (2) ta được:

\(\begin{array}{l}\frac{{1 - {q^2} + {q^4}}}{{1 + {q^6}}} = \frac{{65}}{{325}} \Leftrightarrow \frac{{1 - {q^2} + {q^4}}}{{1 + {q^6}}} = \frac{1}{5} \Leftrightarrow 1 + {q^6} = 5\left( {1 - {q^2} + {q^4}} \right)\\ \Leftrightarrow 1 + {q^6} = 5 - 5{q^2} + 5{q^4} \Leftrightarrow {q^6} - 5{q^4} + 5{q^2} - 4 = 0\end{array}\)

Đặt \({q^2} = t\left( {t \ge 0} \right)\). Khi đó phương trình có dạng:

\({t^3} - 5{t^2} + 5t - 4 = 0 \Leftrightarrow t = 4 \Leftrightarrow {q^2} = 4 \Leftrightarrow q =  \pm 2\)

Với \(q =  - 2\) thế vào (2) ta được: \({u_1}\left( {1 + {{\left( { - 2} \right)}^6}} \right) = 325 \Leftrightarrow {u_1} = 5\).

Với \(q = 2\) thế vào (2) ta được: \({u_1}\left( {1 + {2^6}} \right) = 325 \Leftrightarrow {u_1} = 5\).

Vậy có hai cấp số nhân \(\left( {{u_n}} \right)\) thoả mãn:

‒ Cấp số nhân có số hạng đầu \({u_1} = 5\) và công bội \(q = 2\).

‒ Cấp số nhân có số hạng đầu \({u_1} = 5\) và công bội \(q =  - 2\).