Cho hình chóp S.ABC có SA;SB;SC đôi một vuông góc với nhau và Tính thể tích khối chóp S.ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn A.
Do đáy là tam tam giác đều cạnh a nên diện tích đáy là:
Thể tích khối chóp là:

Đáp án là D
• Trong tam giác ABC vuông cân tại B có: A B = B C = A C 2 = a 2
• Đường cao hình chóp: S A = a 3 .Diện tích đáy S ∆ A B C = 1 2 A B . B C = a 2 .
• Thể tích khối chóp: S S . A B C = 1 3 S A S ∆ A B C = a 8 3 3 .

Đáp án B
Gọi H là trung diểm của BC suy ra cos A C B ^ = sin H A B ^ = 1 3 ⇒ cos H A B ^ = 2 2 3
Mà sin B A C ^ = 2 sin H A B ^ . cos H A B ^ = 4 2 9 nên theo định lí Sin, ta có R ∆ A B C = B C 2 s i n B A C ^ = 9 4
Bán kính mặt cầu ngoại tiếp hình chóp S.ABC là R = R 2 ∆ A B C + S A 2 4 = a 97 4
Vậy diện tích mặt cầu cần tính là S = 4 πR 2 = 4 π a 97 4 2 = 97 πa 2 4

Đáp án C
Thể tích của khối chóp S.ABC có SA, SB, SC đôi một vuông góc nhau là: V = 1 6 S A . S B . S C = a 3 6

Chọn D.
H là tâm của tam giác ABC, M là trung điểm của BC
Trong mp(SAM) dựng đt ss với SA cắt trung trực của SA tại I suy ra I là tâm mặt cầu ngoại tiếp

Đáp án B
Phương pháp:
- Chứng minh Δ A B C vuông tại B, tìm tâm và bán kính đường tròn ngoại tiếp tam giác đáy.
- Sử dụng công thức R 2 = h 2 4 + r 2 với R là bán kính hình cầu ngoại tiếp khối chóp, h là chiều cao, r là bán kính đường tròn ngoại tiếp đa giác đáy.
Cách giải:
Ta có: cos 60 ° = 1 2 = a 2 a → cos B A C = A B A C
⇒ Δ A B C vuông tại B.
Gọi M là trung điểm AC.
⇒ M là tâm đường tròn ngoại tiếp Δ A B C
⇒ M A = M A = A C 2 = a
Gọi r là bán kính đường tròn ngoại tiếp tam giác đáy.
R là bán kính mặt cầu ngoại tiếp hình chóp.
h là chiều cao hình chóp.
Ta có công thức sau:
R 2 = h 2 4 + r 2 ⇒ R 2 = a 2 4 + a 2 = a 5 2
⇒ V = 4 3 π R 3 = 5 a 5 6
Chú ý khi giải:
HS cần linh hoạt trong việc chứng minh Δ A B C vuông tại B và biết sử dụng công thức liên hệ giữa R, r, h.
Đáp án C
Thể tích khối chóp là V = 1 6 .2 3 .2.3 = 2 3