K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2019

Rối hình đừng hỏi, vì mình vẽ hình ra nháp nó đã rối sẵn rồi :)Violympic toán 9

Kẻ đường kính AD, BE, CF

\(\Delta ABD\) có: \(\hat{ABD}=90^o\)(góc nội tiếp chắn nửa đường tròn)

\(\Rightarrow\)\(\sin\hat{ADB}\)\(=\dfrac{AB}{AD}\)(tỉ số lượng giác) mà \(\hat{ACB}=\hat{ADB}\)(cùng chắn \(\stackrel\frown{AB}\)) \(\Rightarrow\)\(\sin\hat{ACB}\)\(=\dfrac{AB}{AD}\)\(\Rightarrow2R=\)\(AB\over\sin\hat{ACB}\)

Chứng minh tương tự với \(\Delta BCE,\Delta CAF\)\(\Rightarrow2R=\)\(BC\over\sin\hat{BAC}\)\(=\)\(AC\over\sin\hat{ABC}\)

Từ 2 điều trên ta được điều phải chứng minh

b, Ta có: \(\hat{ACD}=90^o\)(góc nội tiếp chắn nửa đường tròn)\(\Rightarrow\left\{{}\begin{matrix}AC\perp CD\\AC\perp BK\left(gt\right)\end{matrix}\right.\Rightarrow\)BK//CD\(\Leftrightarrow\)BH//CD

Chứng minh tương tự ta có: CH // BD (cùng vuông góc với AB)

Tứ giác BHCD có: BH // CD, CH // BD (cmt) nên là hình bình hành có 2 đường chéo HD và BC cắt nhau tại trung điểm I của BC nên H, I, D thẳng hàng

9 tháng 2 2019

À lộn, \(\Delta BCE,\Delta BCF\) nhé

14 tháng 11 2018

Chọn đáp án C.

Gọi M là trung điểm của BC: Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Do tam giác ABC đều nên tâm đường tròn nội tiếp tam giác ABC là trọng tâm, tâm đường tròn ngoại tiếp tam giác ABC

Áp dụng định lí Pytago vào tam giác ABM ta có:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

14 tháng 1 2019

A B C L' K O J E D I F L

Gọi I là tâm nội tiếp \(\Delta\)ABC, khi đó 3 điểm C,I,K  thẳng hàng. Gọi đường tròn ngoại tiếp \(\Delta\)AIE cắt tia CI tại điểm thứ hai F.

Xét \(\Delta\)CKA và \(\Delta\)CIB có: ^ACK = ^BCI (=^ACB/2); ^CAK = ^CBI (=^ABC/2) => \(\Delta\)CKA ~ \(\Delta\)CIB (g.g)

Suy ra: \(\frac{CK}{CI}=\frac{CA}{CB}\). Mà \(\frac{CA}{CB}=\frac{CD}{CA}\)(\(\Delta\)CAD ~ \(\Delta\)CBA) nên \(\frac{CK}{CI}=\frac{CD}{CA}\Rightarrow\frac{CK}{CD}=\frac{CI}{CA}\)

Lại có: CEA và CIF là 2 cát tuyến của (AIE) nên \(\frac{CI}{CA}=\frac{CE}{CF}\). Từ đó: \(\frac{CK}{CD}=\frac{CE}{CF}\)

Suy ra: \(\Delta\)CEK ~ \(\Delta\)CFD (c.g.c) => ^CEK = ^CFD. Nếu ta gọi 2 tia FD và EK cắt nhau ở L' thì ^CEL' = ^CFL'

=> Tứ giác CL'FE nội tiếp => ^ECF = ^EL'F => ^KCD = ^KL'D => Tứ giác CKDL' nội tiếp 

Áp dụng phương tích đường tròn có: FK.FC=FD.FL'   (1)

Cũng từ \(\Delta\)CKA ~ \(\Delta\)CIB (cmt) => ^BIF = ^AKI hay ^AKF = ^EIC => ^AKF = ^CAF

=> \(\Delta\)AFK ~ \(\Delta\)CFA (g.g)  => FA2 = FK.FC        (2)

Từ (1) và (2) => FA2 = FD.FL' => \(\Delta\)FDA ~ \(\Delta\)FAL' (c.g.c)

=> ^FL'A = ^FAD = ^DAC - ^FAC = ^ABC - ^FKA = ^ABC - (^KAC + ^ACK) = ^ABC/2 - ^ACB/2

Do đó: ^AL'E = ^FL'A + ^FL'E = ^ABC/2 - ^ACB/2 + ^ACB/2 = ^ABC/2 = ^ABE => Tứ giác ABL'E nội tiếp

Hay tia EK cắt đường tròn ngoại tiếp tam giác ABE tại L' => L' trùng L

Từ đó dễ có: ^BLC = ^ABC/2 + ^ACB + ^ABC/2 + ^BAC/2 = ^ABC + ^ACB + ^BAC/2 = 1800 - ^BAC/2

Vậy thì tâm của đường tròn (BLC) nằm tại điểm chính giữa cung BC chứa A của (O) (đpcm).

12 tháng 9 2017

Ta có:  B O C ^ = 2 B A C ^ ,   C O A ^ = 2 C B A ^ ,   A O B ^ = 2 A C B ^

( góc ở tâm gấp 2 lần số đo góc nội tiếp cùng chắn 1 cung )

S = S O A B + S O B C + S O C A  

=  1 2 O A . O B . sin A O B ^ + 1 2 O B . O C . sin B O C ^ + 1 2 O C . O A . sin C O A ^

S = 1 2 R 2 sin 2 A + sin 2 B + sin 2 C  .

ĐÁP ÁN A

4 tháng 4 2020

Vì DI = DB (gt) nên tam giác DIB cân tại D

Suy ra: \(\widehat{DIB}=\widehat{DBI}\) =>  \(\widehat{BAD}+\widehat{ABI}=\widehat{IBC}+\widehat{DBC}\)

Mà AD là phân giác góc BAC nên cung BD = cung CD

Ta có: BAD là góc nội tiếp chắn cung BD

           DBC là góc nội tiếp chắn cung CD

Do đó: \(\widehat{BAD}=\widehat{DBC}\Rightarrow\widehat{ABI}=\widehat{IBC}\)

=> BI là phân giác của góc ABC

Lại có: AI là phân giác góc BAC

Vậy I là tâm đường tròn nội tiếp tam giác ABC (Đpcm)

Bổ sung: ΔABC cân tại A

ΔABC cân tại A

=>AO đi qua trug diểm I của EF

Vẽ IK vuông góc AB tại K, gọi H và G lần lượt là giao của OA với BC và(O)

Vì OE vuông góc AB, IK vuông goc AB, GB vuông góc AB

=>OE//IK//GB

ΔABG có IK//GB

nên IK/BG=AI/AG

=>IK=AI*BG/AG

ΔABH có EI//BH

ΔABE có OE//BG

=>IH/AH=BE/BA=OG/AG và AE/AB=AI/AH

=>IH=AH*OE/AE

ΔABG có OE//BG

nên AB/AE=BG/OE

AH/AI=AB/AE=BG/OE

=>AH*OE=AI*BG 

=>AH*OG=AI*BG

=>IK=IH

=>ĐPCM

25 tháng 3 2023

có pải bài trên ko ạ

6 tháng 2 2019

b/ Kéo dài BI cắt (O) tại E

Ta có \(B\widehat{I}D=\frac{1}{2}\left(\widebat{BD}+\widehat{AE}\right)\)( góc có đỉnh bên trong đường tròn (O))

Mà \(\widebat{BD}=\widebat{DC}\)\(\widebat{AE}=\widebat{EC}\)

Nên\(B\widehat{I}D=\frac{1}{2}\left(\widebat{DC}+\widebat{EC}\right)=\frac{1}{2}\widebat{ED}\)

Mặc khác \(D\widehat{B}I=\frac{1}{2}\widebat{ED}\)( tự CM nha )

=> \(B\widehat{I}D=D\widebat{B}I\)

=> tam giác BID cân