Cho tam giác nhọn ABC nội tiếp đường tròn ( O;R). Các đường cao AD, BE và CF cắt nhau tại H.
a. Chứng minh các tứ giác BFHD, BFEC nội tiếp.
b. Chứng minh BD.BC = BH.BE.
c. Kẻ AD cắt cung BC tại M. Chứng minh D là trung điểm của MH.
c. Tính độ dài đường tròn ngoại tiếp tam giác BHC theo R.
a)
Vì \(\widehat{HFB}+\widehat{HDB}=180^o\)=> Tứ giác BFHD nội tiếp
Vì \(\widehat{BFC}=\widehat{BEC}=90^o\)=> Tứ giác BFEC nội tiếp
b) Xét tam giác BDH và tam giác BEC có: \(\widehat{BDH}=\widehat{BEC}=90^o\), \(\widehat{B_1}\)chung
=> Tam giác BDH đồng dạng tam giác BEC
=> \(\frac{BD}{BH}=\frac{BE}{BC}\)=> BD.BC=BE.BH
c) \(\widehat{BCM}=\widehat{BAM}\)( cùng chắn cung BM của đường tròn (O)) (1)
vì \(\widehat{ADC}=\widehat{CFA}=90^o\)=> Tứ giác AFDC nội tiếp
=> \(\widehat{FAD}=\widehat{FCD}\) hay \(\widehat{BAM}=\widehat{HCB}\) (2)
Từ (1) , (2)
=> \(\widehat{BCM}=\widehat{BCH}\)=> CD là đường phân giác của tam giác HCM mà CD cũng là đường cao
=> HCM cân tại C=> D là trung điểm HM
c) Câu hỏi của Nguyễn Vy - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo link này nhé!