Cho M ở ngoài đường tròn(O;R). Vẽ tiếp tuyến MAB đi qua tâm O. Cát tuyến MCD bất kỳ.Chứng minh:
a)MA.MB=MC.MD
b)MT.MT=MA.MB
c)tam giác MTC đồng dạng với tam giác MDT
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác MAOB có \(\widehat{OAM}+\widehat{OBM}=180^0\)
nên MAOB là tứ giác nội tiếp
a) Xét tứ giác MAOB có:
\(\widehat{MAO}+\widehat{MBO}=90^o+90^o=180^o\) (MA,MB là tiếp tuyến)
=> Tứ giác MAOB nội tiếp (dhnb)
b) Tam giác CAD vuông tại C (tiếp tuyến tại C) và có BC là đường cao (góc ABC nội tiếp chắn nửa đường tròn)
\(\Rightarrow AC^2=AB.AD\) (hệ thức lượng) (1)
Có: \(AC^2=\left(2R\right)^2=4R^2\) (2)
Từ (1) và (2) suy ra \(AB.AD=4R^2\)
a) Xét tứ giác MAOB có
\(\widehat{OAM}\) và \(\widehat{OBM}\) là hai góc đối
\(\widehat{OAM}+\widehat{OBM}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: MAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Xét (O) có
ΔABC nội tiếp đường tròn(A,C,B∈(O))
AC là đường kính(gt)
Do đó: ΔABC vuông tại B(Định lí)
⇔CB⊥AB tại B
⇔CB⊥AD tại B
Áp dụng hệ thức lượng trong tam giác vuông vào ΔADC vuông tại C có CB là đường cao ứng với cạnh huyền AD, ta được:
\(AB\cdot AD=AC^2\)
\(\Leftrightarrow AB\cdot AC=\left(2\cdot R\right)^2=4R^2\)(đpcm)