K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

AB,AC là tiếp tuyến

nên AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc BC tại H

b: Xét ΔOBA vuông tại B có BH là đường cao

nên OH*OA=OB^2=OA^2-AB^2

13 tháng 1 2022

a) Gọi I là trung điểm của OA, ta ngay lập tức có được \(IO=IA=\frac{OA}{2}\)và BI, CI lần lượt là các trung tuyến của các tam giác OAB và OAC

Vì AB là tiếp tuyến tại A của đường tròn (O) \(\Rightarrow AB\perp OB\)tại B \(\Rightarrow\Delta OAB\)vuông tại B

\(\Delta OAB\)vuông tại B có trung tuyến BI \(\Rightarrow IB=\frac{OA}{2}\)

Chứng minh tương tự, ta có: \(IC=\frac{OA}{2}\)

Như vậy ta có \(IO=IA=IB=IC\left(=\frac{OA}{2}\right)\)

Vậy 4 điểm A, B, O, C cùng nằm trên đường tròn có tâm I, đường kính là OA.

b) Nhận thấy \(OB=OC\)(cùng bằng bán kính của (O)) 

\(\Rightarrow\)O nằm trên đường trung trực của BC. (1)

Xét đường tròn (O) có 2 tiếp tuyến tại B và C cắt nhau tại A \(\Rightarrow AB=AC\)(tính chất 2 tiếp tuyến cắt nhau)

\(\Rightarrow\)A nằm trên đường trung trực của BC. (2)

Từ (1) và (2) \(\Rightarrow\)OA là trung trực của BC \(\Rightarrow OA\perp BC\left(đpcm\right)\)

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)

a: ΔODE cân tại O

mà OI là trung tuyến

nên OI vuông góc DE

góc OIA=góc OBA=góc OCA=90 độ

=>O,I,B,A,C cùng thuộc đường tròn đường kính OA
b: ĐIểm K ở đâu vậy bạn?

2 tháng 8 2020

2 O A B C D

Trong tam giác ACD, ta có :

B là trung điểm của AC ( gt )

O là trung điểm của CD

Nên OB là đường trung bình của \(\Delta ACD\)

Suy ra : \(OB=\left(\frac{1}{2}\right).AD\) ( tính chất đường trung bình của tam giác )

Vậy AD = 2 . OB = 2 . 2 = 4 ( cm )

a: góc MEO+góc MFO=90+90=180 độ

=>MEOF nội tiếp

b: Xét ΔMEP và ΔMQE có

góc MEP=góc MQE
góc EMP chung

=>ΔMEP đồng dạng với ΔMQE

=>ME/MQ=MP/ME

=>ME^2=MQ*MP

a: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay ΔAMB cân tại M

hay \(\widehat{AMB}=60^0\)

nên ΔAMB đều

b: Xét (O) có 

NA là tiếp tuyến

NC là tiếp tuyến

Do đó: ON là tia phân giác của góc AOC(1)

Xét (O) có

QC là tiếp tuyến

QB là tiếp tuyến

Do đó: OQ là tia phân giác của góc NOB(2)

Từ (1) và (2) suy ra \(\widehat{NOQ}=\dfrac{1}{2}\cdot120^0=60^0\)

16 tháng 1 2022

Còn câu c thì sao ạ