Cho \(\Delta ABC\) nội tiếp đường tròn (O;R), đường cao AH.
Chứng minh rằng:
a/ AB.AC=2R.AH
b/ S=\(\frac{abc}{4R}\) với BC=a, AC=b, S=Sabc
giúp mình giải bài này nha...THANK..!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc ACM=1/2*sđ cung AM=90 độ
góc BAD+góc ABD=90 độ
góc MAC+góc AMC=90 độ
mà góc ABD=góc AMC
nên góc BAD=góc MAC
b: góc AEB=góc ADB=90 độ
=>AEDB nội tiếp
1: ΔABC cân tại A
=>AB=AC
mà OB=OC
nên AO là trung trực của BC
=>AD là đường kính của (O)
2: Xét (O) có
góc ACD là góc nội tiếp chắn nửa đường tròn
=>góc ACD=90 độ
3: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
=>HB=HC=BC/2=12cm
AH=căn AB^2-AH^2=16cm
ΔACD vuông tại C có CH là đường cao
nên AC^2=AH*AD
=>AD=20^2/16=25cm
=>R=12,5cm
a) Ta có AD là đường cao của △ABC (gt)
=> AD⊥BC => \(\widehat{CDA} = 90^o\)
Tương tự ta có \(\widehat{CEB}=90^o \)
Tứ giác CEHD có : \(\widehat{CDA} + \widehat{CEB} = 90^o + 90^o = 180^o \) => Tứ giác CEHD là tứ giác nội tiếp => 4 điểm C,H,D,E cùng thuộc 1 đường tròn
b) △AEH và △ADC , có
\(\begin{cases} \widehat{AEH}=\widehat{ADC}=90^o\\ \widehat{CAD} ( góc chung ) \end{cases} \)=> △AEH đồng dạng với △ADC ( g.g)
=> \(\dfrac{AE}{AD}=\dfrac{AH}{AC} \) ( tỉ số đồng dạng ) => AE.AC = AH.AD (1)
Ta có \(\widehat{AFC} = 90^o \) ( góc nội tiếp chắn nửa đường tròn )
△AFC vuông tại F , có FE là đường cao ( BF ⊥ AC tại E ) => \(AF^2\) = AE.AC ( hệ thức lượng ) (2)
Từ (1) và (2) => \(AF^2= AH.AD\)
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
góc EAH+góc ACB=90 độ
góc EBC+góc ACB=90 độ
=>góc EAH=góc EBC
b: AK cắt EF tại M
AK cắt BC tại N
AH cắt (O) tại K
=>HM//AB và QN//AB
=>HM//QN
Gọi S là giao điểm của 2 đường tròn (PCE) và (PBF).
Trước hết, ta thấy \(\Delta\)PCE ~ \(\Delta\)AOB => ^CPE = ^OAB. Tương tự: ^BPF = ^OAC.
Suy ra: ^CPE + ^BPF = ^OAB + ^OAC = ^BAC = 1800 - ^BPC => E,P,F thẳng hàng => ^EPS + ^FPS = 1800
Mà ^FPS + ^SNF = 1800 nên ^EPS = ^SNF => ^EMS = ^SNQ (Vì ^EPS = ^EMS)
=> Tứ giác SMQN nội tiếp. Hay S thuộc đường tròn (QMN).
Bằng các góc nội tiếp, ta có: ^BSC = ^BSP + ^CSP = ^BFP + ^CEP = ^BAC = const. Mà BC cố định
Nên S nằm trên đường tròn đối xứng với (O) và BC => Đường tròn (BCS) cố định
Ta sẽ chứng minh: Đường tròn (QMN) tiếp xúc với (BCS) cố định (tại điểm chung S).
Thật vậy, từ S vẽ tiếp tiếp Sx của đường tròn (QMN). Dễ thấy: ^MSx = ^MNS = ^PBS (Do tứ giác BPSN nội tiếp)
Xét đường tròn (PCE): ^MSC = ^MPC = ^CBP. Từ đó: MSx + ^MSC = ^PBS + ^CBP = ^CBS
Do đó: Sx cũng là tiếp tuyến của đường tròn (BCS). Cho nên (QMN) luôn tiếp xúc (BCS) cố định (đpcm).
Cho BG cắt AC tại N, CG cắt AB tại P. Qua B kẻ đường thẳng song song với AC cắt CF,AF tại I,J. Qua C kẻ đường thẳng song song với AB cắt EB,EA tại D,H
\(\Delta BCA\)và \(\Delta CDB\)có : \(\widehat{ABC}=\widehat{BCD}\left(slt\right);\widehat{BAC}=\widehat{CBD}\)(góc tạo bởi tiếp tuyến & dây cung và góc nội tiếp cùng chắn cung BC) nên \(\Delta BCA\infty\Delta CDB\left(g.g\right)\). Suy ra : \(\frac{BC}{CD}=\frac{AB}{BC}\Leftrightarrow BC^2=AB.CD\left(1\right)\)
\(\Delta BCA\)và \(\Delta IBC\)có : \(\widehat{BCA}=\widehat{IBC}\left(slt\right);\widehat{BAC}=\widehat{ICB}\)(góc tạo bởi tiếp tuyến & dây cung và góc nội tiếp cùng chắn cung BC) nên \(\Delta BCA\infty\Delta IBC\left(g.g\right)\). Suy ra : \(\frac{BC}{IB}=\frac{CA}{BC}\Leftrightarrow BC^2=IB.CA\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow AB.CD=IB.CA\Leftrightarrow\frac{AB}{BI}=\frac{AC}{CD}\)
Áp dụng hệ quả định lí Talet : AC // IJ\(\Rightarrow\frac{AN}{JB}=\frac{FN}{FB}=\frac{CN}{BI}\Rightarrow BJ=BI\)(vì AN = CN)
AB // DH\(\Rightarrow\frac{PB}{CD}=\frac{EP}{EC}=\frac{AP}{HC}\Rightarrow CD=HC\)(vì PB = AP)
\(\frac{AB}{BI}=\frac{AC}{CD}\Leftrightarrow\frac{AB}{BJ}=\frac{AC}{CH}\). \(\widehat{JBA}=\widehat{CAB};\widehat{CAB}=\widehat{ACH}\left(slt\right)\Rightarrow\widehat{JBA}=\widehat{ACH}\)
\(\Delta ABJ,\Delta ACH\)có \(\widehat{JBA}=\widehat{HCA};\frac{AB}{BJ}=\frac{AC}{CH}\Rightarrow\Delta ABJ\infty\Delta ACH\left(c.g.c\right)\Rightarrow\widehat{AJB\:}=\widehat{AHC}\)
Mà \(\widehat{AJB\:}=\widehat{FAC};\widehat{AHC}=\widehat{EAB}\)(đồng vị) nên \(\widehat{EAB}=\widehat{FAC}\)
P/S : - Bài này là câu 7 của đề thi HSG Toán 9 Đà Nẵng 2017 - 2018 vào ngày 1/3 vừa qua. Mình bí bài này nhưng đã nhận được đáp án đề thi và muốn đưa bài giải cho mọi người tham khảo
- Link đáp án : www.facebook.com/toaji.phan/posts/595746860776994?pnref=story
- Link hình : www.facebook.com/toanhockhocothayanh/photos/a.258465918014842.1073741829.258088654719235/295108181017282/?type=3&theater
Bao giờ bạn cần. Để mai mình suy nghĩ làm được k?
viết thiếu rùi bạn phải thêm BC là đường kính của đường tròn nữa