Cho xOy nhọn lấy A,B thuộc tia Ox, (OA<OB). Lấy C,D thuộc Oy sao cho OC=OA; OD=OB. Gọi E là giao điểm AD và BC
a) CM: AD=BC
b)CM: Tam giác EAB=tam giác ECD
c) CM: OE là tia phân giác xOy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔOAD và ΔOCB có
OA=OC
góc O chung
OD=OB
=>ΔOAD=ΔOCB
=>AD=CB
b: Xét ΔEAB và ΔECD có
góc EAB=góc ECD
AB=CD
góc EBA=góc EDC
=>ΔEAB=ΔECD
https://hoc24.vn/cau-hoi/cho-goc-nhon-xoy-lay-diem-ab-thuoc-tia-ox-sao-cho-oa-ob-lay-diem-cd-thuoc-tia-oy-sao-cho-oaob-lay-diem-c-d-thuoc-tia-oy-sao-cho-ocoa-od.7621651044223
có ng trả lời cho bn rùi mà
a: Xét ΔOAI và ΔOBI có
OA=OB
\(\widehat{AOI}=\widehat{BOI}\)
OI chung
Do đó: ΔOAI=ΔOBI
\(a,\left\{{}\begin{matrix}OA=OB\\\widehat{AOI}=\widehat{BOI}\\OI\text{ chung}\end{matrix}\right.\Rightarrow\Delta AOI=\Delta BOI\left(c.g.c\right)\\ b,\text{Gọi }AB\cap OI=\left\{H\right\}\\ \left\{{}\begin{matrix}OA=OB\\\widehat{AOI}=\widehat{BOI}\\OH\text{ chung}\end{matrix}\right.\Rightarrow\Delta AOH=\Delta BOH\left(c.g.c\right)\\ \Rightarrow\widehat{AHO}=\widehat{BHO}\\ \text{Mà }\widehat{AHO}+\widehat{BHO}=180^0\\ \Rightarrow\widehat{AHO}=\widehat{BHO}=90^0\\ \Rightarrow OI\bot AB\)
a: Xét ΔOAC và ΔOBC có
OA=OB
\(\widehat{AOC}=\widehat{BOC}\)'
OC chung
Do đó: ΔOAC=ΔOBC
=>AC=BC và \(\widehat{OAC}=\widehat{OBC}\)
\(\widehat{OAC}+\widehat{xAC}=180^0\)(hai góc kề bù)
\(\widehat{OBC}+\widehat{yBC}=180^0\)(hai góc kề bù)
mà \(\widehat{OAC}=\widehat{OBC}\)
nên \(\widehat{xAC}=\widehat{yBC}\)
b: OA=OB
=>O nằm trên đường trung trực của AB(1)
CA=CB
=>C nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OC là đường trung trực của AB
=>OC\(\perp\)AB
=>Oz\(\perp\)AB
a: Xét ΔOAD và ΔOCB có
OA=OC
góc AOD chung
OD=OB
=>ΔOAD=ΔOCB
=>AD=CB
b: Xét ΔEAB và ΔECD có
góc EAB=góc ECD
AB=CD
góc EBA=góc EDC
=>ΔEAB=ΔECD
c: Xét ΔOAE và ΔOCE có
OA=OC
AE=CE
OE chung
=>ΔOAE=ΔOCE
=>góc AOE=góc COE
=>góc AOM=góc CON
Xét ΔCON và ΔAOM có
góc CON=góc AOM
CO=AO
góc OCN=góc OAM
=>ΔCON=ΔAOM
=>ON=OM
=>ΔENM can tại E
=>EM=EN
=>NC=MA
Xét ΔEMB và ΔEND có
EM=EN
góc MEB=góc NED
EB=ED
=>ΔEMB=ΔEND
=>ND=MB và góc EMB=góc END
=>góc KMO=góc KNO
=>ΔKMN cân tại K
KD+DN=KN
KB+BM=KM
mà KM=KN; DN=BM
nên KD=KB
=>K nằm trên trung trực của DB(1)
OB=OD
nên O nằm trên trung trực của DB(2)
EB=ED
nên E nằm trên trung trực của DB(3)
Từ (1), (2), (3) suy ra O,E,K thẳng hàng
a, chứng minh tam giác oac= tam giác obc
xét tam giác aoc và tam giác obc có:
oa=ob(giả thiết)
oc là cạnh chung
góc aoc=góc cob (giả thiết)
=>tam giác aoc= tam giác obc (c.g.c)